LINEABILITY, SPACEABILITY, AND ALGEBRABILITY OF CERTAIN SUBSETS OF FUNCTION SPACES

被引:31
|
作者
Garcia-Pacheco, F. J. [1 ]
Martin, M. [2 ]
Seoane-Sepulveda, J. B. [3 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[3] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 04期
关键词
Riemann integrable; Lebesgue integrable; Continuous unbounded functions; Lineability; Spaceability; Algebrability; BANACH-SPACES; SUBSPACES; SETS;
D O I
10.11650/twjm/1500405506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct infinite-dimensional Banach spaces and infinitely generated Banach algebras of functions that, except for 0, satisfy some kind of special or pathological property. Three of these structures are: a Banach algebra of everywhere continuous bounded functions which are not Riemann-integrable; a Banach space of Lebesgue-integrable functions that are not Riemann-integrable; an algebra of continuous unbounded functions defined on an arbitrary non-compact metric space.
引用
收藏
页码:1257 / 1269
页数:13
相关论文
共 50 条