Lineability in subsets of measure and function spaces

被引:35
|
作者
Munoz-Fernandez, G. A. [1 ]
Palmberg, N. [2 ]
Puglisi, D. [3 ]
Seoane-Sepulveda, J. B. [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
[2] Abo Akad Univ, Dept Math, FIN-20500 Turku, Finland
[3] Kent State Univ, Dept Math, Kent, OH 44242 USA
关键词
lineability; spaceability; linear spaces; measure space; injective measure; function spaces;
D O I
10.1016/j.laa.2008.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, among other results, that if lambda denotes the Lebesgue measure on the Borel sets in [0, 1] and X is an infinite dimensional Banach space, then the set of measures whose range is neither closed nor convex is lineable in ca(lambda, X). We also show that, in certain situations, we have lineability of the set of X-valued and non-sigma-finite measures with relatively compact range. The lineability of sets of the type L-p(I)\L-q (I) is studied and some open questions are proposed. Some classical techniques together with the converse of the Lyapunov Convexity Theorem are used. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2805 / 2812
页数:8
相关论文
共 50 条
  • [1] LINEABILITY, SPACEABILITY, AND ALGEBRABILITY OF CERTAIN SUBSETS OF FUNCTION SPACES
    Garcia-Pacheco, F. J.
    Martin, M.
    Seoane-Sepulveda, J. B.
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (04): : 1257 - 1269
  • [2] Lineability in sequence and function spaces
    Araujo, G.
    Bernal-Gonzalez, L.
    Munoz-Fernandez, G. A.
    Prado-Bassas, J. A.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2017, 237 (02) : 119 - 136
  • [3] Lineability and spaceability on vector-measure spaces
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Puglisi, Daniele
    STUDIA MATHEMATICA, 2013, 219 (02) : 155 - 161
  • [4] Lineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces
    J. Carmona Tapia
    J. Fernández-Sánchez
    J. B. Seoane-Sepúlveda
    W. Trutschnig
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [5] Lineability, spaceability, and latticeability of subsets of C([0,1]) and Sobolev spaces
    Tapia, J. Carmona
    Fernandez-Sanchez, J.
    Seoane-Sepulveda, J. B.
    Trutschnig, W.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [6] Lineability and algebrability within p-adic function spaces
    Khodabandehlou, J.
    Maghsoudi, S.
    Seoane-Sepulveda, J. B.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (05) : 711 - 729
  • [7] Additivity and lineability in vector spaces
    Bartoszewicz, Artur
    Glab, Szymon
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) : 2123 - 2130
  • [8] COMPACT SUBSETS IN FUNCTION SPACES
    KAUL, SK
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (04): : 461 - &
  • [9] COMPACT SUBSETS IN FUNCTION SPACES
    KAUL, SK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 781 - &
  • [10] Traces of Sobolev spaces to irregular subsets of metric measure spaces
    Tyulenev, A., I
    SBORNIK MATHEMATICS, 2023, 214 (09) : 1241 - 1320