Lineability in subsets of measure and function spaces

被引:35
|
作者
Munoz-Fernandez, G. A. [1 ]
Palmberg, N. [2 ]
Puglisi, D. [3 ]
Seoane-Sepulveda, J. B. [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
[2] Abo Akad Univ, Dept Math, FIN-20500 Turku, Finland
[3] Kent State Univ, Dept Math, Kent, OH 44242 USA
关键词
lineability; spaceability; linear spaces; measure space; injective measure; function spaces;
D O I
10.1016/j.laa.2008.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, among other results, that if lambda denotes the Lebesgue measure on the Borel sets in [0, 1] and X is an infinite dimensional Banach space, then the set of measures whose range is neither closed nor convex is lineable in ca(lambda, X). We also show that, in certain situations, we have lineability of the set of X-valued and non-sigma-finite measures with relatively compact range. The lineability of sets of the type L-p(I)\L-q (I) is studied and some open questions are proposed. Some classical techniques together with the converse of the Lyapunov Convexity Theorem are used. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2805 / 2812
页数:8
相关论文
共 50 条
  • [21] EQUIDIFFERENTIABILITY OF SUBSETS OF INFINITELY DIFFERENTIABLE FUNCTION SPACES
    Kodama, Satoshi
    Akashi, Shigeo
    FIXED POINT THEORY, 2010, 11 (02): : 323 - 326
  • [22] Dense lineability and spaceability in certain subsets of l∞$\ell _{\infty }$
    Leonetti, Paolo
    Russo, Tommaso
    Somaglia, Jacopo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2283 - 2303
  • [23] NORMALITY IN DENSE SUBSETS OF FUNCTION-SPACES
    BATUROV, DP
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (04): : 63 - 65
  • [24] A general lineability criterion for complements of vector spaces
    G. Araújo
    A. Barbosa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [25] Lineability on nets and uncountable sequences of functions in measure theory
    Rodriguez-Vidanes, Daniel L.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [26] On extensions of Sobolev functions defined on regular subsets of metric measure spaces
    Shvartsman, P.
    JOURNAL OF APPROXIMATION THEORY, 2007, 144 (02) : 139 - 161
  • [27] POINCARE SEQUENCES IN INFINITE MEASURE-SPACES AND COMPLEMENTING SUBSETS OF THE INTEGERS
    EIGEN, S
    HAJIAN, A
    LECTURE NOTES IN MATHEMATICS, 1988, 1342 : 154 - 157
  • [28] A distance function for computing on finite subsets of Euclidean spaces
    Hajar Ghahremani-Gol
    Farzad Didehvar
    Asadollah Razavi
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 197 - 208
  • [29] A distance function for computing on finite subsets of Euclidean spaces
    Ghahremani-Gol, Hajar
    Didehvar, Farzad
    Razavi, Asadollah
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 197 - 208
  • [30] A Distance Function for Computing on Finite Subsets of Euclidean Spaces
    Hajar Ghahremani-Gol
    Farzad Didehvar
    Asadollah Razavi
    ActaMathematicaeApplicataeSinica, 2018, 34 (01) : 197 - 208