Vanadium trioxide nanowire arrays as a cathode material for lithium-ion battery

被引:28
|
作者
Hua, Kang [1 ,2 ]
Li, Xiujuan [1 ]
Fang, Dong [1 ,2 ]
Bao, Rui [1 ]
Yi, Jianhong [1 ]
Luo, Zhiping [2 ,3 ]
Fu, Zewei [4 ]
Hu, Juntao [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
[2] Wuhan Text Univ, Coll Mat Sci & Engn, Wuhan 430073, Hubei, Peoples R China
[3] Fayetteville State Univ, Dept Chem & Phys, Fayetteville, NC 28301 USA
[4] Yunnan Tin Grp Holding Co Ltd, Kunming 650000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
V2O3; Nanowire arrays; Lithium-ion batteries; PERFORMANCE ANODE MATERIALS; OXIDE NANOWIRES; HIGH-CAPACITY; V2O3; ELECTRODES; NANOCOMPOSITES; NANOPARTICLES; COMPOSITE; STORAGE; LIFE;
D O I
10.1016/j.ceramint.2018.03.178
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports a study on the electrochemical performance of vanadium trioxide (V-2O3) nanowire arrays as a cathode material for Li-ion battery. V2O3 nanowire arrays are formed via thermal treatment of ammonium vanadium bronze (NH4V4O10) nanowires in a 5% H-2 and 95% Ar atmosphere. X-ray diffraction confirms the thermal reduction. The V2O3 nanowire arrays as an electrode of lithium-ion battery exhibit high reversible capacity and excellent long-term cycling stability. The discharge capacity increases from 243 to 428 mA h g(-1) at the first 20 cycles. After 100 cycles, a stable capacity of 444 mA h g(-1) is retained at a current density of 30 mA g(-1).
引用
收藏
页码:11307 / 11313
页数:7
相关论文
共 50 条
  • [41] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    N. Balke
    S. Jesse
    A. N. Morozovska
    E. Eliseev
    D. W. Chung
    Y. Kim
    L. Adamczyk
    R. E. García
    N. Dudney
    S. V. Kalinin
    Nature Nanotechnology, 2010, 5 : 749 - 754
  • [42] Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
    Balke, N.
    Jesse, S.
    Morozovska, A. N.
    Eliseev, E.
    Chung, D. W.
    Kim, Y.
    Adamczyk, L.
    Garcia, R. E.
    Dudney, N.
    Kalinin, S. V.
    NATURE NANOTECHNOLOGY, 2010, 5 (10) : 749 - 754
  • [43] Synthesis Conditions Optimization of Lithium Vanadium as Cathode Materials for Lithium-ion Battery by Sol-Gel Method
    He Chuanxin
    Hu Shengming
    Ren Xiangzhong
    Jiang Yingkai
    Zhang Peixin
    Liu Jianhong
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 : 663 - 667
  • [44] Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling
    Pardikar, Kunal
    Entwistle, Jake
    Ge, Ruihuan
    Cumming, Denis
    Smith, Rachel
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (02):
  • [45] Lithium-ion battery: A comprehensive research progress of high nickel ternary cathode material
    Chang, Longjiao
    Wei, Anlu
    Luo, Shaohua
    Cao, Shiyuan
    Bi, Xiaolong
    Yang, Wei
    Yang, Ruifen
    Liu, Jianan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 23145 - 23172
  • [46] Electrochemical study of doped LiFePO4 as a cathode material for lithium-ion battery
    Chekannikov, Andrey
    Novikova, Svetlana
    Kulova, Tatiana
    Skundin, Alexander
    Yaroslavtsev, Andrey
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND ENGINEERING, 2016, 6 (01): : 1 - 8
  • [47] Synthesis of LiCoPO4 as a cathode material for lithium-ion battery by a polymer method
    Yang, Man
    Du, ChenQiang
    Tang, ZhiYuan
    Wu, JunWei
    Zhang, XinHe
    IONICS, 2014, 20 (07) : 1039 - 1046
  • [48] Preparation and Research of LiFePO4 Composite Cathode Material for Lithium-ion Battery
    Zhang, Lingyun
    Jia, Ruokun
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL VII, 2011, : 100 - 103
  • [49] Synthesis of LiCoPO4 as a cathode material for lithium-ion battery by a polymer method
    Man Yang
    ChenQiang Du
    ZhiYuan Tang
    JunWei Wu
    XinHe Zhang
    Ionics, 2014, 20 : 1039 - 1046
  • [50] An electrostatic potential study of LiFePO4 cathode material for lithium-ion battery
    Choe, Yong-Su
    Han, Sun-Bom
    Ahn, Jong-Hun
    Kim, Chang-Il
    SOLID STATE COMMUNICATIONS, 2021, 328