Geodesic Portrait of de Sitter-Schwarzschild Spacetime

被引:5
|
作者
Dymnikova, I. [1 ,2 ]
Poszwa, A. [1 ]
Soltysek, B. [1 ]
机构
[1] Univ Warmia & Mazury Olsztyn, Dept Math & Comp Sci, PL-10561 Olsztyn, Poland
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
来源
GRAVITATION & COSMOLOGY | 2008年 / 14卷 / 03期
关键词
D O I
10.1134/S0202289308030092
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
De Sitter-Schwarzschild space-time is a globally regular spherically symmetric spacetime which is asymptotically de Sitter as r -> 0 and asymptotically Schwarzschild as r -> infinity. A source term in the Einstein equations smoothly connects de Sitter vacuum at the origin with Minkowski vacuum at infinity and corresponds to an anisotropic vacuum fluid defined by symmetry of its stress-energy tensor which is invariant under radial boosts. In the range of the mass parameter M >= M-crit, de Sitter-Schwarzschild spacetime represents a vacuum nonsingular black hole, while M < M-crit corresponds to a compact gravitationally bound vacuum object without horizons, called a G-lump. Masses of objects are related to both de Sitter vacuum trapped inside and to smooth breaking of the spacetime symmetry from the de Sitter group at the origin to the Poincare group at infinity. We here present a geodesic survey of de Sitter-Schwarzschild spacetime.
引用
收藏
页码:262 / 275
页数:14
相关论文
共 50 条
  • [31] Cosmological quantum states of de Sitter-Schwarzschild are static patch partition functions
    Blacker, Matthew J.
    Hartnoll, Sean A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [32] On geodesic deviation in Schwarzschild spacetime
    Philipp, Dennis
    Perlick, Volker
    Laemmerzahl, Claus
    Deshpande, Kaustubh
    [J]. 2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2015, : 198 - 203
  • [33] Mass function and particle creation in Schwarzschild–de Sitter spacetime
    Sourav Bhattacharya
    Amitabha Lahiri
    [J]. The European Physical Journal C, 2013, 73
  • [34] Perturbations of the Asymptotic Region of the Schwarzschild-de Sitter Spacetime
    Gasperin, Edgar
    Kroon, Juan A. Valiente
    [J]. ANNALES HENRI POINCARE, 2017, 18 (05): : 1519 - 1591
  • [35] On the duality of Schwarzschild-de Sitter spacetime and moving mirror
    Fernandez-Silvestre, Diego
    Foo, Joshua
    Good, Michael R. R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (05)
  • [36] Scalar field fluctuations in Schwarzschild-de Sitter spacetime
    Cho, Hing-Tong
    Ng, Kin-Wang
    Wang, I-Chin
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (05)
  • [37] The real scalar field in Schwarzschild-de Sitter spacetime
    Tian, JX
    Gui, YX
    Guo, GH
    Lv, Y
    Zhang, SH
    Wang, W
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (08) : 1473 - 1480
  • [38] De Sitter and Schwarzschild-de Sitter according to Schwarzschild and de Sitter
    McInnes, B
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (09):
  • [39] Cosmology from an Anti-de Sitter-Schwarzschild Black Hole via Holography
    Apostolopoulos, Pantelis S.
    Siopsis, George
    Tetradis, Nikolaos
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (15)
  • [40] de Sitter spacetime: effects of metric perturbations on geodesic motion
    Donato Bini
    Giampiero Esposito
    Andrea Geralico
    [J]. General Relativity and Gravitation, 2012, 44 : 467 - 490