On the duality of Schwarzschild-de Sitter spacetime and moving mirror

被引:6
|
作者
Fernandez-Silvestre, Diego [1 ,2 ]
Foo, Joshua [3 ]
Good, Michael R. R. [4 ,5 ]
机构
[1] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain
[2] Univ Valencia, CSIC, IFIC, C Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Queensland, Sch Math & Phys, Ctr Quantum Computat & Commun Technol, St Lucia, Qld 4072, Australia
[4] Nazarhayev Univ, Dept Phys, Kabanbay Batyr Ave 53, Nur Sultan 010000, Kazakhstan
[5] Nazarhayev Univ, Energet Cosmos Lab, Kabanbay Batyr Ave 53, Nur Sultan 010000, Kazakhstan
基金
澳大利亚研究理事会;
关键词
QFT in curved spacetime; black holes; cosmological horizons; moving mirrors; PARTICLE CREATION; BLACK-HOLE; TEMPERATURE; RADIATION; REFLECTIONS; UNIVERSE; HORIZON; FIELD;
D O I
10.1088/1361-6382/ac4b03
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On a conformal Schwarzschild-de Sitter spacetime
    Hristu Culetu
    [J]. General Relativity and Gravitation, 2021, 53
  • [2] On a conformal Schwarzschild-de Sitter spacetime
    Culetu, Hristu
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [3] Energy in the Schwarzschild-de Sitter spacetime
    Salti, M
    Aydogdu, O
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 2006, 19 (03) : 269 - 276
  • [4] On the Uniqueness of Schwarzschild-de Sitter Spacetime
    Borghini, Stefano
    Chrusciel, Piotr T. T.
    Mazzieri, Lorenzo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
  • [5] Phase transition in Schwarzschild-de Sitter spacetime
    D. Momeni
    A. Azadi
    [J]. Astrophysics and Space Science, 2008, 317 : 231 - 234
  • [6] Hadamard state in Schwarzschild-de Sitter spacetime
    Brum, Marcos
    Joras, Sergio E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (01)
  • [7] On the Global Temperature of the Schwarzschild-de Sitter Spacetime
    Volovik, G. E.
    [J]. JETP LETTERS, 2023, 118 (01) : 8 - 13
  • [8] Radiative falloff in Schwarzschild-de Sitter spacetime
    Brady, PR
    Chambers, CM
    Laarakkers, WG
    Poisson, E
    [J]. PHYSICAL REVIEW D, 1999, 60 (06):
  • [9] Phase transition in Schwarzschild-de Sitter spacetime
    Momeni, D.
    Azadi, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2008, 317 (3-4) : 231 - 234
  • [10] Synchrotron geodesic radiation in Schwarzschild-de Sitter spacetime
    Brito, Joao P. B.
    Bernar, Rafael P.
    Crispino, Luis C. B.
    [J]. PHYSICAL REVIEW D, 2020, 101 (12)