Fractional reaction-diffusion

被引:268
|
作者
Henry, BI [1 ]
Wearne, SL [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1016/S0378-4371(99)00469-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a fractional reaction-diffusion equation from a continuous-time random walk model with temporal memory and sources. The equation provides a general model for reaction-diffusion phenomena with anomalous diffusion such as occurs in spatially inhomogeneous environments. As a first investigation of this equation ae consider the special case of single species fractional reaction-diffusion in one dimension and show that the fractional diffusion does not by itself precipitate a Turing instability. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 50 条
  • [21] Complex-order fractional diffusion in reaction-diffusion systems
    Bueno-Orovio, Alfonso
    Burrage, Kevin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [22] On Stability of a Fractional Discrete Reaction-Diffusion Epidemic Model
    Alsayyed, Omar
    Hioual, Amel
    Gharib, Gharib M.
    Abualhomos, Mayada
    Al-Tarawneh, Hassan
    Alsauodi, Maha S.
    Abu-Alkishik, Nabeela
    Al-Husban, Abdallah
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [23] A novel analysis of the fractional Cauchy reaction-diffusion equations
    Sarwe, Deepak Umarao
    Raj, A. Stephan Antony
    Kumar, Pushpendra
    Salahshour, Soheil
    INDIAN JOURNAL OF PHYSICS, 2024, : 1825 - 1837
  • [24] ON FRACTIONAL REACTION-DIFFUSION EQUATIONS INVOLVING UNBOUNDED DELAY
    Tuan, Nguyen Huy
    Hai, Nguyen Minh
    Thach, Tran Ngoc
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (08) : 1709 - 1724
  • [25] Solving the Caputo Fractional Reaction-Diffusion Equation on GPU
    Liu, Jie
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [26] Mathematical modeling of time fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 215 - 225
  • [27] The Decay of mass for a nonlinear fractional reaction-diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1369 - 1378
  • [28] Inhomogeneous oscillatory structures in fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    PHYSICS LETTERS A, 2008, 372 (05) : 619 - 622
  • [29] On a semilinear fractional reaction-diffusion equation with nonlocal conditions
    Tran Ngoc Thach
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Duc Phuong
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5511 - 5520
  • [30] An approximate solution of nonlinear fractional reaction-diffusion equation
    Das, S.
    Gupta, P. K.
    Ghosh, P.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4071 - 4076