Negacyclic codes over the local ring Z4[v]/⟨v2+2v⟩ of oddly even length and their Gray images

被引:7
|
作者
Cao, Yuan [1 ]
Cao, Yonglin [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Negacyclic code; Dual code; Self-dual code; Local ring; Finite chain ring; SELF-DUAL CODES; CYCLIC CODES; LINEAR CODES; CONSTACYCLIC CODES; PREPARATA; KERDOCK; WEIGHT;
D O I
10.1016/j.ffa.2018.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = Z(4)[v]/< v(2) + 2v > = Z(4) + vZ(4) (v(2) = 2v) and n be an odd positive integer. Then R is a local non-principal ideal ring of 16 elements and there is a Z(4)-linear Gray map from R onto Z(4)(2) which preserves Lee distance and orthogonality. First, a canonical form decomposition and the structure for any negacyclic code over R of length 2n are presented. From this decomposition, a complete classification of all these codes is obtained. Then the cardinality and the dual code for each of these codes are given, and self-dual negacyclic codes over R of 2 length 2n are presented. Moreover, all 23 . (4(P) + 5 . 2(P) + 9)2(p)-2/p negacyclic codes over R of length 2M(p) and all 3 . (4(P) + 5 . 2(P) + 2(p-1)-1 /9) self-dual codes among them are presented precisely, where M-P = 2(P) - 1 is a Mersenne prime. Finally, 36 new and good self-dual 2 -quasi-twisted linear codes over Z(4) with basic parameters (28, 2(28), d(L) = 8, d(E) = 12) and of type 2(14)4(7) and basic parameters (28, 2(28), d(L) = 6, d(E) = 12) and of type 21848 which are Gray images of self-dual negacyclic codes over R of length 14 are listed. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 93
页数:27
相关论文
共 50 条
  • [31] On the generators of Z4 cyclic codes of length 2e
    Abualrub, T
    Oehmke, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2126 - 2133
  • [32] On constacyclic codes of length ps over Fpm[u, v]/⟨u2, v2, uv - vu⟩
    Dinh, Hai Q.
    Kewat, Pramod Kumar
    Kushwaha, Sarika
    Yamaka, Woraphon
    [J]. DISCRETE MATHEMATICS, 2020, 343 (08)
  • [33] The rank of Z4 cyclic codes of length 2e
    Abualrub, T
    Ghrayeb, A
    Oehmke, RH
    [J]. ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 651 - 654
  • [34] Cyclic codes over the ring Zp[u, v]/[u2, v2, uv-vu]
    Kewat, Pramod Kumar
    Ghosh, Bappaditya
    Pattanayak, Sukhamoy
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 161 - 175
  • [35] ON QUANTUM CODES CONSTRUCTION FROMCONSTACYCLIC CODES OVER THE RING Iq[u,v]/⟨u2-α2,v2-α2,uv-vu⟩
    Ali, Shakir
    Sharma, Pushpendra
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (02) : 139 - 159
  • [36] Complete distances of all negacyclic codes of length 2S over Z2a
    Dinh, Hai Q.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 147 - 161
  • [37] Self-orthogonal codes over Z4 arising from the chain ring Z4[u]/⟨u2+1⟩
    Kim, Boran
    Han, Nayoung
    Lee, Yoonjin
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78
  • [38] MacDonald codes over the ring Fp + vFp + v2Fp
    Wang, Yongkang
    Gao, Jian
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [39] DNA cyclic codes over the ring F2[u, v]/⟨u2-1, v3 - v, uv - vu⟩
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Pattanayak, Sukhamoy
    Sriboonchitta, Songsak
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (03)
  • [40] Constacyclic codes over the ring Fp[u, v]/⟨u2-1, v3 - v, uv - vu⟩ and their applications
    Ashraf, Mohammad
    Ali, Shakir
    Mohammad, Ghulam
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (12):