A new yield function for porous materials

被引:18
|
作者
Alves, Luis M. M. [1 ]
Martins, Paulo A. F. [1 ]
Rodrigues, Jorge M. C. [1 ]
机构
[1] Univ Tecn Lisboa, Dept Engn Mecan, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
powder forging; finite element method (FEM); experimentation;
D O I
10.1016/j.jmatprotec.2006.03.091
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Densification of sintered copper under uniaxial compression is analyzed by means of three different plasticity criteria-Shima and Oyane [S. Shima, M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci. 18 (1976) 285-291], Doraivelu et al. [S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, J.F. Thomas, A new yield function for compressible P/M materials, Int. J. Mech. Sci. 26 (9/10) (1984) 527-535] and Lee and Kim [D.N. Lee, H.S. Kim, Plasticity yield behaviour of porous metals, Powder Metall. 35 (1992) 275-279]. Theoretical predictions are compared with experimental data and served as a basis for developing a new yield function for compressible P/M materials. The proposed yield function is not only capable of providing a better agreement with the experiments as its implementation into an existing finite element computer program proves to be successful for the numerical modelling of a powder forged component. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [31] A YIELD CRITERION OF POROUS MATERIALS WITH ANISOTROPY CAUSED BY GEOMETRY OR DISTRIBUTION OF PORES
    HISATSUNE, T
    TABATA, T
    MASAKI, S
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1991, 113 (04): : 425 - 429
  • [32] Prediction of plastic yield surface for porous materials by a machine learning approach
    Shen, W.Q.
    Cao, Y.J.
    Shao, J.F.
    Liu, Z.B.
    [J]. Materials Today Communications, 2020, 25
  • [33] Prediction of plastic yield surface for porous materials by a machine learning approach
    Shen, W. Q.
    Cao, Y. J.
    Shao, J. F.
    Liu, Z. B.
    [J]. MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [34] Yield criterion and finite strain behavior of random porous isotropic materials
    Hure, J.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 85
  • [35] Specific Heat Of Porous Materials As A Function Of Moisture Content
    Singhal, Devendra K.
    Singh, Usha
    [J]. PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 641 - 642
  • [36] YIELD CRITERIA OF HETEROGENEOUS MATERIALS WITH RIGID-PLASTIC CONSTITUENTS - CASE OF POROUS OR CRACKED MATERIALS
    GUENNOUNI, T
    [J]. JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1987, 6 (04): : 571 - 615
  • [37] New function of hydrogen in materials
    Okada, Masuo
    Kamegawa, Atsunori
    Nakahigashi, Jun
    Yamaguchi, Akira
    Fujita, Asaya
    Yamauchi, Miho
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 173 (1-3): : 253 - 259
  • [38] NEW METHOD FOR INVESTIGATING PERMEABILITY OF POROUS MATERIALS
    LIDORENKO, NS
    MUCHNIK, GF
    SOLOMONOV, SD
    GORDON, AR
    [J]. HIGH TEMPERATURE, 1974, 12 (05) : 949 - 953
  • [39] A New Direction in Microfluidics: Printed Porous Materials
    Evard, Hanno
    Priks, Hans
    Saar, Indrek
    Aavola, Heili
    Tamm, Tarmo
    Leito, Ivo
    [J]. MICROMACHINES, 2021, 12 (06)
  • [40] New horizons for the use of porous materials as catalysts
    Davis, ME
    [J]. SCIENCE AND TECHNOLOGY IN CATALYSIS 1998, 1999, 121 : 23 - 32