Chainability of inverse limits with a single irreducible function on [0,1]

被引:4
|
作者
Kelly, James P. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Inverse limits; Upper semi-continuous; Chainable; Irreducible; SET-VALUED FUNCTIONS;
D O I
10.1016/j.topol.2014.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper of Kelly and Meddaugh (2013) [5], a method was demonstrated for constructing upper-semi continuous set-valued functions on [0,1] whose inverse limits are indecomposable continua. In this paper, we give a characterization of chainability for such inverse limits. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条
  • [31] ON BASES IN C([0,1]) AND L-1([0,1])
    Foias, Ciprian
    Singer, Ivan
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (03): : 215 - 244
  • [32] A partial classification of inverse limits with irreducible functions
    Kelly, James P.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 199 : 111 - 131
  • [33] Universal function for a weighted space Lμ1 [0,1]
    Sargsyan, Artsrun
    Grigoryan, Martin
    [J]. POSITIVITY, 2017, 21 (04) : 1457 - 1482
  • [34] VALUES OF THE PERMANENT FUNCTION ON MULTIDIMENSIONAL (0,1)-MATRICES
    Guterman, A. E.
    Evseev, I. M.
    Taranenko, A. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (02) : 262 - 276
  • [35] Inverse spectral problem for singular AKNS and Schrodinger operators on [0,1]
    Serier, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (09) : 671 - 676
  • [36] The inverse {0,1}-knapsack problem: Theory, algorithms and computational experiments
    Roland, Julien
    Figueira, Jose Rui
    De Smet, Yves
    [J]. DISCRETE OPTIMIZATION, 2013, 10 (02) : 181 - 192
  • [37] Continuous [0,1]-lattices and injective [0,1]-approach spaces
    Yu, Junche
    Zhang, Dexue
    [J]. Fuzzy Sets and Systems, 2022, 444 : 49 - 78
  • [38] Continuous [0,1]-lattices and injective [0,1]-approach spaces
    Yu, Junche
    Zhang, Dexue
    [J]. FUZZY SETS AND SYSTEMS, 2022, 444 : 49 - 78
  • [39] ON COREFLECTIVE HULLS IN [0,1]-TOP AND s[0,1]-TOP
    Singh, Veena
    Srivastava, Arun K.
    [J]. QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 167 - 179
  • [40] The full Muntz theorem in C[0,1] and L(1)[0,1]
    Borwein, P
    Erdelyi, T
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 102 - 110