Continuous [0,1]-lattices and injective [0,1]-approach spaces

被引:0
|
作者
Yu, Junche [1 ]
Zhang, Dexue [1 ]
机构
[1] School of Mathematics, Sichuan University, Chengdu, China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
In 1972, Dana Scott proved a fundamental result on the connection between order and topology which says that injective T0 spaces are precisely continuous lattices endowed with Scott topology. This paper investigates whether this is true in an enriched context, where the enrichment is the quantale obtained by equipping the interval [0,1] with a continuous t-norm. It is shown that for each continuous t-norm, the specialization [0,1]-order of a separated and injective [0,1]-approach space X is a continuous [0,1]-lattice and the [0,1]-approach structure of X coincides with the Scott [0,1]-approach structure of its specialization [0,1]-order; but, unlike in the classical situation, the converse fails in general. © 2021 Elsevier B.V.
引用
收藏
页码:49 / 78
相关论文
共 50 条
  • [1] Continuous [0,1]-lattices and injective [0,1]-approach spaces
    Yu, Junche
    Zhang, Dexue
    [J]. FUZZY SETS AND SYSTEMS, 2022, 444 : 49 - 78
  • [2] BASES IN SPACES C(0,1) AND L (0,1)
    CHANTURIA, ZA
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (11): : 1013 - +
  • [3] Bijections between (0,1), (0,1], and [0,1]
    Witkowski, Alfred
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (02): : 139 - 139
  • [4] QUOTIENTS OF RIGID (0,1)-LATTICES
    KOUBEK, V
    SICHLER, J
    [J]. ARCHIV DER MATHEMATIK, 1985, 44 (05) : 403 - 412
  • [5] ON PERMUTATIONS IN BMO([0,1]X[0,1]) SPACE
    OTYRBA, DZ
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (01): : 82 - 84
  • [6] Inverse limits with subsets of [0,1]x[0,1]
    Mahavier, WS
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2004, 141 (1-3) : 225 - 231
  • [7] Baire property of spaces of [0,1]-valued continuous functions
    Osipov, Alexander V.
    Pytkeev, Evgenii G.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [8] DISTRIBUTIVE (0,1)-LATTICES WITH AN ADDED CONSTANT
    Koubek, V.
    Sichler, J.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1061 - 1089
  • [9] ON BASES IN C([0,1]) AND L-1([0,1])
    Foias, Ciprian
    Singer, Ivan
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (03): : 215 - 244
  • [10] On the universal function for the class LP[0,1], p ∈ (0,1)
    Grigoryan, M. G.
    Sargsyan, A. A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (08) : 3111 - 3133