What are effective descent morphisms of Priestley spaces?

被引:0
|
作者
Janelidze, George [1 ]
Sobral, Manuela [2 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Cape Town, South Africa
[2] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
Effective descent morphism; Priestley space; Stone space; Open map; Distributive lattice; Ordered set; Monadic functor; EFFECTIVE CODESCENT MORPHISMS; QUASIVARIETIES;
D O I
10.1016/j.topol.2014.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the problem formulated in the title. We solve it only in two very special cases: for maps with finite codomains and for maps that are open and order-open, or, equivalently, open and order-closed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [31] On linear morphisms of product spaces
    Bichara, A
    Havlicek, H
    Zanella, C
    DISCRETE MATHEMATICS, 2003, 267 (1-3) : 35 - 43
  • [32] KAHLER SPACES AND EQUIDIMENSIONAL MORPHISMS
    VAROUCHAS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (06): : 245 - 248
  • [33] COHOMOLOGY OF MORPHISMS OF SHEAFED SPACES
    KOMATSU, H
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1971, 18 (02): : 287 - &
  • [34] The Priestley separation axiom for scattered spaces
    Bezhanishvili, G
    Mines, R
    Morandi, PJ
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2002, 19 (01): : 1 - 10
  • [35] The Priestley Separation Axiom for Scattered Spaces
    Guram Bezhanishvili
    Ray Mines
    Patrick J. Morandi
    Order, 2002, 19 : 1 - 10
  • [36] Duality theory for enriched Priestley spaces
    Hofmann, Dirk
    Nora, Pedro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (03)
  • [37] DESCENT OF P-PROPERTY BY PROPER SURJECTIVE MORPHISMS
    OGOMA, T
    NAGOYA MATHEMATICAL JOURNAL, 1983, 92 (DEC) : 175 - 177
  • [38] Pure Morphisms are Effective for Modules
    Bachuki Mesablishvili
    Applied Categorical Structures, 2013, 21 : 801 - 809
  • [39] Pure Morphisms are Effective for Modules
    Mesablishvili, Bachuki
    APPLIED CATEGORICAL STRUCTURES, 2013, 21 (06) : 801 - 809
  • [40] Effective criteria for birational morphisms
    Hacon, CD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 337 - 348