The Priestley Separation Axiom for Scattered Spaces

被引:0
|
作者
Guram Bezhanishvili
Ray Mines
Patrick J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
来源
Order | 2002年 / 19卷
关键词
Priestley space; quasi-order; scattered space; Stone space;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a quasi-order on a compact Hausdorff topological space X. We prove that if X is scattered, then R satisfies the Priestley separation axiom if and only if R is closed in the product space X×X. Furthermore, if X is not scattered, then we show that there is a quasi-order on X that is closed in X×X but does not satisfy the Priestley separation axiom. As a result, we obtain a new characterization of scattered compact Hausdorff spaces.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 50 条
  • [1] The Priestley separation axiom for scattered spaces
    Bezhanishvili, G
    Mines, R
    Morandi, PJ
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2002, 19 (01): : 1 - 10
  • [2] Vietoris hyperspaces over scattered Priestley spaces
    Taras Banakh
    Robert Bonnet
    Wiesław Kubiś
    Israel Journal of Mathematics, 2022, 249 : 37 - 81
  • [3] Vietoris hyperspaces over scattered Priestley spaces
    Banakh, Taras
    Bonnet, Robert
    Kubis, Wieslaw
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (01) : 37 - 81
  • [4] RO SEPARATION AXIOM IN CLOSURE SPACES
    THRON, WJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A654 - &
  • [5] THE HAUSDORFF SEPARATION AXIOM FOR FUZZY TOPOLOGICAL SPACES
    Rodabaugh, S. E.
    TOPOLOGY AND ITS APPLICATIONS, 1980, 11 (03) : 319 - 334
  • [6] PRIESTLEY SPACES
    VENUGOPALAN, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (03) : 605 - 610
  • [7] THE ORDER STRUCTURE OF STONE SPACES AND THE TD-SEPARATION AXIOM
    GEHRKE, M
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1991, 37 (01): : 5 - 15
  • [8] Descent for Priestley Spaces
    Margarida Dias
    Manuela Sobral
    Applied Categorical Structures, 2006, 14 : 229 - 241
  • [9] Descent for Priestley spaces
    Dias, Margarida
    Sobral, Manuela
    APPLIED CATEGORICAL STRUCTURES, 2006, 14 (03) : 229 - 241
  • [10] The semi-T3-separation axiom of Khalimsky topological spaces
    Han, Sang-Eon
    Ozcag, Selma
    FILOMAT, 2023, 37 (08) : 2539 - 2559