FEATURE DISCRETIZATION AND SELECTION IN MICROARRAY DATA

被引:0
|
作者
Ferreira, Artur [1 ,3 ]
Figueiredo, Mario [2 ,3 ]
机构
[1] Inst Super Engn Lisboa, Lisbon, Portugal
[2] Inst Super Tecn, Lisbon, Portugal
[3] Inst Telecomunicacoes, Lisbon, Portugal
关键词
Feature selection; Feature discretization; Microarray data; Tumor detection; Cancer detection; INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumor and cancer detection from microarray data are important bioinformatics problems. These problems are quite challenging for machine learning methods, since microarray datasets typically have a very large number of features and small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. This paper proposes unsupervised feature discretization and selection methods suited for microarray data. The experimental results reported, conducted on public domain microarray datasets, show that the proposed discretization and selection techniques yield competitive and promising results with the best previous approaches. Moreover, the proposed methods efficiently handle multi-class microarray data.
引用
收藏
页码:465 / 469
页数:5
相关论文
共 50 条
  • [31] Effective feature selection framework for cluster analysis of microarray data
    Pok, Gouchol
    Liu, Jyh-Charn Steve
    Ryu, Keun Ho
    [J]. BIOINFORMATION, 2010, 4 (08) : 385 - 389
  • [32] Feature selection in independent component subspace for microarray data classification
    Zheng, Chun-Hou
    huang, De-S Huang
    Shang, Li
    [J]. NEUROCOMPUTING, 2006, 69 (16-18) : 2407 - 2410
  • [33] Feature selection using differential evolution for microarray data classification
    Prajapati S.
    Das H.
    Gourisaria M.K.
    [J]. Discover Internet of Things, 2023, 3 (01):
  • [34] Data Mining via Discretization, Generalization and Rough Set Feature Selection
    Hu, Xiaohua
    Cercone, Nick
    [J]. Knowledge and Information Systems, 1999, 1 (01): : 33 - 60
  • [35] Feature Selection Using Counting Grids: Application to Microarray Data
    Lovato, Pietro
    Bicego, Manuele
    Cristani, Marco
    Jojic, Nebojsa
    Perina, Alessandro
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 629 - 637
  • [36] Robust Feature Selection for Microarray Data Based on Multicriterion Fusion
    Yang, Feng
    Mao, K. Z.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (04) : 1080 - 1092
  • [37] A hybrid feature selection approach for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Wang, Hao
    Zhang, Yanqing
    Bourgeois, Anu
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 678 - 685
  • [38] Parallel classification and feature selection in microarray data using SPRINT
    Mitchell, Lawrence
    Sloan, Terence M.
    Mewissen, Muriel
    Ghazal, Peter
    Forster, Thorsten
    Piotrowski, Michal
    Trew, Arthur
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (04): : 854 - 865
  • [39] An enhanced feature selection filter for classification of microarray cancer data
    Mazumder, Dilwar Hussain
    Veilumuthu, Ramachandran
    [J]. ETRI JOURNAL, 2019, 41 (03) : 358 - 370
  • [40] Stable feature selection and classification algorithms for multiclass microarray data
    Sebastian Student
    Krzysztof Fujarewicz
    [J]. Biology Direct, 7