PyOD: A Python']Python Toolbox for Scalable Outlier Detection

被引:0
|
作者
Zhao, Yue [1 ]
Nasrullah, Zain [2 ]
Li, Zheng [3 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Toronto, Toronto, ON M5S 2E4, Canada
[3] Northeastern Univ Toronto, Toronto, ON M5X 1E2, Canada
关键词
anomaly detection; outlier detection; outlier ensembles; neural networks; machine learning; data mining; !text type='Python']Python[!/text; SUPPORT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyOD is an open-source Python toolbox for performing scalable outlier detection on multivariate data. Uniquely, it provides access to a wide range of outlier detection algorithms, including established outlier ensembles and more recent neural network-based approaches, under a single, well-documented API designed for use by both practitioners and researchers. With robustness and scalability in mind, best practices such as unit testing, continuous integration, code coverage, maintainability checks, interactive examples and parallelization are emphasized as core components in the toolbox's development. PyOD is compatible with both Python 2 and 3 and can be installed through Python Package Index (PyPI) or https : //github . com/yzhao062/pyod.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] PyOD: A python toolbox for scalable outlier detection
    Zhao, Yue
    Nasrullah, Zain
    Li, Zheng
    [J]. Journal of Machine Learning Research, 2019, 20
  • [2] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [3] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    [J]. COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [4] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217
  • [5] PyCoTools: a Python']Python toolbox for COPASI
    Welsh, Ciaran M.
    Fullard, Nicola
    Proctor, Carole J.
    Martinez-Guimera, Alvaro
    Isfort, Robert J.
    Bascom, Charles C.
    Tasseff, Ryan
    Przyborski, Stefan A.
    Shanley, Daryl P.
    [J]. BIOINFORMATICS, 2018, 34 (21) : 3702 - 3710
  • [6] Scalable Bootstrapping for Python']Python
    Birsinger, Peter
    Xia, Richard
    Fox, Armando
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 2441 - 2446
  • [7] DASPy: A Python']Python Toolbox for DAS Seismology
    Hu, Minzhe
    Li, Zefeng
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (05) : 3055 - 3066
  • [8] PyPLT: Python']Python Preference Learning Toolbox
    Camilleri, Elizabeth
    Yannakakis, Georgios N.
    Melhart, David
    Liapis, Antonios
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [9] WALNUT- A PYTHON']PYTHON BIOPSYCHOPHYSICS TOOLBOX
    Hoffmann, Sven
    Siebelmann, Bernhard
    Wascher, Edmund
    Rinkenauer, Gerhard
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 173 - 173
  • [10] Orange: Data Mining Toolbox in Python']Python
    Demsar, Janez
    Curk, Tomaz
    Erjavec, Ales
    Gorup, Crt
    Hocevar, Tomaz
    Milutinovic, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Staric, Anze
    Stajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2349 - 2353