PyOD: A Python']Python Toolbox for Scalable Outlier Detection

被引:0
|
作者
Zhao, Yue [1 ]
Nasrullah, Zain [2 ]
Li, Zheng [3 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Toronto, Toronto, ON M5S 2E4, Canada
[3] Northeastern Univ Toronto, Toronto, ON M5X 1E2, Canada
关键词
anomaly detection; outlier detection; outlier ensembles; neural networks; machine learning; data mining; !text type='Python']Python[!/text; SUPPORT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyOD is an open-source Python toolbox for performing scalable outlier detection on multivariate data. Uniquely, it provides access to a wide range of outlier detection algorithms, including established outlier ensembles and more recent neural network-based approaches, under a single, well-documented API designed for use by both practitioners and researchers. With robustness and scalability in mind, best practices such as unit testing, continuous integration, code coverage, maintainability checks, interactive examples and parallelization are emphasized as core components in the toolbox's development. PyOD is compatible with both Python 2 and 3 and can be installed through Python Package Index (PyPI) or https : //github . com/yzhao062/pyod.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] bandicoot: a Python']Python Toolbox for Mobile Phone Metadata
    de Montjoye, Yves-Alexandre
    Rocher, Luc
    Pentland, Alex 'Sandy'
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [22] Megaman: Scalable Manifold Learning in Python']Python
    McQueen, James
    Meila, Marina
    VanderPlas, Jacob
    Zhang, Zhongyue
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [23] Scalable Parallel Programming in Python']Python with Parsl
    Babuji, Yadu
    Woodard, Anna
    Li, Zhuozhao
    Katz, Daniel S.
    Clifford, Ben
    Foster, Ian
    Wilde, Michael
    Chard, Kyle
    [J]. PEARC '19: PROCEEDINGS OF THE PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING ON RISE OF THE MACHINES (LEARNING), 2019,
  • [24] Commissioning simulations tools based on python']python Accelerator Toolbox
    Liuzzo, S. M.
    Carmignani, N.
    Carver, L. R.
    Hoummi, L.
    Perron, T.
    White, S.
    Agapov, I.
    Boese, M.
    Hellert, T.
    Keil, J.
    Malina, L.
    Musa, E.
    Veglia, B.
    [J]. IPAC23 PROCEEDINGS, 2024, 2687
  • [25] GuPPy, a Python']Python toolbox for the analysis of fiber photometry data
    Sherathiya, Venus N.
    Schaid, Michael D.
    Seiler, Jillian L.
    Lopez, Gabriela C.
    Lerner, Talia N.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] PACKMAN-Molecule: Python']Python toolbox for structural bioinformatics
    Khade, Pranav M.
    Jernigan, Robert L.
    Gromiha, Michael
    [J]. BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [27] PyPore: a python']python toolbox for nanopore sequencing data handling
    Semeraro, Roberto
    Magi, Alberto
    [J]. BIOINFORMATICS, 2019, 35 (21) : 4445 - 4447
  • [28] pyPPG: a Python']Python toolbox for comprehensive photoplethysmography signal analysis
    Goda, Marton A.
    Charlton, Peter H.
    Behar, Joachim A.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [29] ZonalMetrics - a Python']Python toolbox for zonal landscape structure analysis
    Adamczyk, Joanna
    Tiede, Dirk
    [J]. COMPUTERS & GEOSCIENCES, 2017, 99 : 91 - 99
  • [30] The Lompe code: A Python']Python toolbox for ionospheric data analysis
    Hovland, A. O.
    Laundal, K. M.
    Reistad, J. P.
    Hatch, S. M.
    Walker, S. J.
    Madelaire, M.
    Ohma, A.
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9