DASPy: A Python']Python Toolbox for DAS Seismology

被引:0
|
作者
Hu, Minzhe [1 ]
Li, Zefeng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Lab Seismol & Phys Earths Interior, Hefei, Peoples R China
[2] Univ Sci & Technol China, Mengcheng Natl Geophys Observ, Mengcheng, Peoples R China
基金
国家重点研发计划;
关键词
DYNAMICS; STRAIN;
D O I
10.1785/0220240124
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Distributed acoustic sensing (DAS) has emerged as a novel technology in geophysics, owing to its high-sensing density, cost effectiveness, and adaptability to extreme environments. Nonetheless, DAS differs from traditional seismic acquisition technologies in many aspects: big data volume, equidistant sensing, measurement of axial strain (strain rate), and noise characteristics. These differences make DAS data processing challenging for new hands. To lower the bar of DAS data processing, we develop an open-source Python toolbox called DASPy, which encompasses classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization, and specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain-velocity conversion. Using openly available DAS data as examples, this article makes an overview and tutorial on the eight modules in DASPy to illustrate the algorithms and practical applications. We anticipate DASPy to provide convenience for researchers unfamiliar with DAS data and help facilitate the rapid growth of DAS seismology.
引用
收藏
页码:3055 / 3066
页数:12
相关论文
共 50 条
  • [1] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [2] FrosPy: A Modular Python']Python Toolbox for Normal Mode Seismology
    Schneider, Simon
    Talavera-Soza, Sujania
    Jagt, Lisanne
    Deuss, Arwen
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (2A) : 967 - 974
  • [3] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    [J]. COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [4] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217
  • [5] PyCoTools: a Python']Python toolbox for COPASI
    Welsh, Ciaran M.
    Fullard, Nicola
    Proctor, Carole J.
    Martinez-Guimera, Alvaro
    Isfort, Robert J.
    Bascom, Charles C.
    Tasseff, Ryan
    Przyborski, Stefan A.
    Shanley, Daryl P.
    [J]. BIOINFORMATICS, 2018, 34 (21) : 3702 - 3710
  • [6] A Python']Python Library for Teaching Computation to Seismology Students
    Aiken, John M.
    Aiken, Chastity
    Cotton, Fabrice
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (03) : 1165 - 1171
  • [7] WALNUT- A PYTHON']PYTHON BIOPSYCHOPHYSICS TOOLBOX
    Hoffmann, Sven
    Siebelmann, Bernhard
    Wascher, Edmund
    Rinkenauer, Gerhard
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 173 - 173
  • [8] PyPLT: Python']Python Preference Learning Toolbox
    Camilleri, Elizabeth
    Yannakakis, Georgios N.
    Melhart, David
    Liapis, Antonios
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [9] Toolbox of image processing for numerical python']python
    Silva, AG
    Lotufo, RD
    Machado, RC
    [J]. XIV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2001, : 402 - 402
  • [10] Orange: Data Mining Toolbox in Python']Python
    Demsar, Janez
    Curk, Tomaz
    Erjavec, Ales
    Gorup, Crt
    Hocevar, Tomaz
    Milutinovic, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Staric, Anze
    Stajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2349 - 2353