FrosPy: A Modular Python']Python Toolbox for Normal Mode Seismology

被引:2
|
作者
Schneider, Simon [1 ]
Talavera-Soza, Sujania [1 ]
Jagt, Lisanne [1 ]
Deuss, Arwen [1 ]
机构
[1] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
SHEAR-VELOCITY; ATTENUATION; MANTLE; EARTH; CATALOG; BOLIVIA;
D O I
10.1785/0220210208
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present free oscillations Python (FrosPy), a modular Python toolbox for normal mode seismology, incorporating several Python core classes that can easily be used and be included in larger Python programs. FrosPy is freely available and open source online. It provides tools to facilitate pre- and postprocessing of seismic normal mode spectra, including editing large time series and plotting spectra in the frequency domain. It also contains a comprehensive database of center frequencies and quality factor (Q) values based on 1D reference model preliminary reference Earth model for all normal modes up to 10 mHz and a collection of published measurements of center frequencies, Q values, and splitting function (or structure) coefficients. FrosPy provides the tools to visualize and convert different formats of splitting function coefficients and plot these as maps. By giving the means of using and comparing normal mode spectra and splitting function measurements, FrosPy also aims to encourage seismologists and geophysicists to learn about normal mode seismology and the study of the Earth's free oscillation spectra and to incorporate them into their own research or use them for educational purposes.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
  • [1] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [2] DASPy: A Python']Python Toolbox for DAS Seismology
    Hu, Minzhe
    Li, Zefeng
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (05) : 3055 - 3066
  • [3] Timor Python']Python: A Toolbox for Industrial Modular Robotics
    Kulz, Jonathan
    Mayer, Matthias
    Althoff, Matthias
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 424 - 431
  • [4] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    [J]. COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [5] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217
  • [6] PyCoTools: a Python']Python toolbox for COPASI
    Welsh, Ciaran M.
    Fullard, Nicola
    Proctor, Carole J.
    Martinez-Guimera, Alvaro
    Isfort, Robert J.
    Bascom, Charles C.
    Tasseff, Ryan
    Przyborski, Stefan A.
    Shanley, Daryl P.
    [J]. BIOINFORMATICS, 2018, 34 (21) : 3702 - 3710
  • [7] A Python']Python Library for Teaching Computation to Seismology Students
    Aiken, John M.
    Aiken, Chastity
    Cotton, Fabrice
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (03) : 1165 - 1171
  • [8] WALNUT- A PYTHON']PYTHON BIOPSYCHOPHYSICS TOOLBOX
    Hoffmann, Sven
    Siebelmann, Bernhard
    Wascher, Edmund
    Rinkenauer, Gerhard
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, : 173 - 173
  • [9] PyPLT: Python']Python Preference Learning Toolbox
    Camilleri, Elizabeth
    Yannakakis, Georgios N.
    Melhart, David
    Liapis, Antonios
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [10] Toolbox of image processing for numerical python']python
    Silva, AG
    Lotufo, RD
    Machado, RC
    [J]. XIV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2001, : 402 - 402