On the role of material properties in ascending thoracic aortic aneurysms

被引:24
|
作者
Cosentino, Federica [1 ,2 ]
Agnese, Valentina [3 ]
Raffa, Giuseppe M. [3 ]
Gentile, Giovanni [3 ]
Bellavia, Diego [3 ]
Zingales, Massimiliano [4 ]
Pilato, Michele [3 ]
Pasta, Salvatore [2 ,3 ]
机构
[1] Univ Palermo, Biomed Dept Internal Med & Special DIBIMIS, Piazza Clin 2, I-90128 Palermo, Italy
[2] Fdn Ri MED, Via Bandiera 11, I-90133 Palermo, Italy
[3] IRCCS, ISMETT, Dept Treatment & Study Cardiothorac Dis & Cardiot, Via Tricomi 5, I-90127 Palermo, Italy
[4] Univ Palermo, Dept Civil, Environm, Aerosp,Mat Engn DICAM, Viale Sci Ed 8, I-90128 Palermo, Italy
关键词
Ascending aortic aneurysm; Inverse approach; Material parameters; Aortic aneurysm failure; Finite-element analysis; WALL SHEAR-STRESS; MECHANICAL-PROPERTIES; INVERSE METHOD; VALVE; QUANTIFICATION; DILATATION; PREDICTORS; DISSECTION; RISK;
D O I
10.1016/j.compbiomed.2019.04.022
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the obstacles standing before the biomechanical analysis of an ascending thoracic aortic aneurysm (ATAA) is the difficulty in obtaining patient-specific material properties. This study aimed to evaluate differences on ATAA-related stress predictions resulting from the elastostatic analysis based on the optimization of arbitrary material properties versus the application of patient-specific material properties determined from ex-vivo biaxial testing. Specifically, the elastostatic analysis relies the on the fact that, if the aortic wall stress does not depend on material properties, the aorta has to be statistically determinate. Finite element analysis (FEA) was applied to a group of nine patients who underwent both angio-CT imaging to reconstruct ATAA anatomies and surgical repair of diseased aorta to collect tissue samples for experimental material testing. Tissue samples cut from excised ATAA rings were tested under equibiaxial loading conditions to obtain experimentally-derived material parameters by fitting stress-strain profiles. FEAs were carried out using both optimized and experimentally-derived material parameters to predict and compare the stress distribution using the mean absolute percentage error (MAPE). Although physiological strains were below yield point (range of 0.08-0.25), elastostatic analysis led to errors on the stress predictions that depended on the type of constitutive model (highest MAPE of 0.7545 for Yeoh model and 0.7683 for Fung model) and ATAA geometry (lowest MAPE of 0.0349 for patient P.7). Elastostatic analysis needs better understanding of its application for determining aneurysm mechanics, and patient-specific material parameters are essential for reliable accurate stress predictions in ATAAs.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 50 条
  • [31] Inverse identification of local stiffness across ascending thoracic aortic aneurysms
    Farzaneh, Solmaz
    Trabelsi, Olfa
    Avril, Stephane
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2019, 18 (01) : 137 - 153
  • [32] Inverse identification of local stiffness across ascending thoracic aortic aneurysms
    Solmaz Farzaneh
    Olfa Trabelsi
    Stéphane Avril
    Biomechanics and Modeling in Mechanobiology, 2019, 18 : 137 - 153
  • [33] Regional variation of wall shear stress in ascending thoracic aortic aneurysms
    Rinaudo, Antonino
    Pasta, Salvatore
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2014, 228 (06) : 627 - 638
  • [34] Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections
    Ganizada, Berta H.
    Veltrop, Rogier J. A.
    Akbulut, Asim C.
    Koenen, Rory R.
    Accord, Ryan
    Lorusso, Roberto
    Maessen, Jos G.
    Reesink, Koen
    Bidar, Elham
    Schurgers, Leon J.
    BASIC RESEARCH IN CARDIOLOGY, 2024, 119 (03) : 371 - 395
  • [35] Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodelling
    Sokolis, Dimitrios P.
    Kritharis, Eleftherios P.
    Giagini, Athina T.
    Lampropoulos, Konstantinos M.
    Papadodima, Stavroula A.
    Iliopoulos, Dimitrios C.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2012, 15 (03) : 231 - 248
  • [36] Atlas-Based Evaluation of Hemodynamic in Ascending Thoracic Aortic Aneurysms
    Catalano, Chiara
    Agnese, Valentina
    Gentile, Giovanni
    Raffa, Giuseppe M.
    Pilato, Michele
    Pasta, Salvatore
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [37] Differential expansion and outcomes of ascending and descending degenerative thoracic aortic aneurysms
    Huang, Ying
    Schaff, Hartzell, V
    Bagameri, Gabor
    Pochettino, Alberto
    Demartino, Randall R.
    Todd, Austin
    Greason, Kevin L.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2024, 167 (03): : 918 - 926.e3
  • [38] Patient-Specific Biomechanics in Marfan Ascending Thoracic Aortic Aneurysms
    Xuan, Yue
    D'Souza, Sara N.
    Wang, Zhongjie
    Pierre, Alejandro Suarez
    Lawton, Jennifer S.
    Ge, Liang
    Tseng, Elaine E.
    ANNALS OF THORACIC SURGERY, 2022, 114 (04): : 1367 - 1375
  • [39] Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters
    Pasta, Salvatore
    Phillippi, Julie A.
    Tsamis, Alkiviadis
    D'Amore, Antonio
    Raffa, Giuseppe M.
    Pilato, Michele
    Scardulla, Cesare
    Watkins, Simon C.
    Wagner, William R.
    Gleason, Thomas G.
    Vorp, David A.
    MEDICAL ENGINEERING & PHYSICS, 2016, 38 (02) : 121 - 130
  • [40] Wall stress on ascending thoracic aortic aneurysms with bicuspid compared with tricuspid aortic valve
    Xuan, Yue
    Wang, Zhongjie
    Liu, Raymond
    Haraldsson, Henrik
    Hope, Michael D.
    Saloner, David A.
    Guccione, Julius M.
    Ge, Liang
    Tseng, Elaine
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 156 (02): : 492 - 500