Construction and testing of the wavefront sensor camera for the new MMT adaptive optics system

被引:3
|
作者
McGuire, PC [1 ]
Rhoadarmer, TA [1 ]
Lloyd-Hart, M [1 ]
Shelton, JC [1 ]
Lesser, MP [1 ]
Angel, JRP [1 ]
Angeli, GZ [1 ]
Hughes, JM [1 ]
Fitz-Patrick, BC [1 ]
Rademacher, ML [1 ]
Schaller, P [1 ]
Kenworthy, MA [1 ]
Wildi, FP [1 ]
Capara, JG [1 ]
Ouellette, DB [1 ]
机构
[1] Univ Arizona, Steward Observ, Ctr Astron Adapt Opt, Tucson, AZ 85721 USA
来源
关键词
wavefront sensor camera; WFS; Shack-Hartmann; pixel transfer function; WFS transfer curve; turbulence plate; noise sensitivity; CCD; lenslet array; CCD read noise;
D O I
10.1117/12.363583
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes the construction and testing of the Shack-Hartmann wavefront sensor (WFS) camera for the new MMT adaptive optics system. Construction and use of the sensor is greatly simplified by having the 12 x 12 lenslet array permanently glued to the detector array, obviating the need for any further realignment. The detector is a frame transfer CCD made by EEV with 80 x 80 pixels, each 24 microns square, and 4 output amplifiers operated simultaneously. 3 x 3 pixel binning is used to create in effect an array of quad-cells, each centered on a spot formed by a lenslet. Centration of the lenslet images is measured to have an accuracy of 1 mu m (0.02 arcsec) rms. The maximum frame rate in the binned mode is 625 Hz, when the rms noise is 4.5 - 5 electrons. In use at the telescope, the guide star entering the wavefront sensor passes through a 2.4 arcsec square field stop matched to the quad-cell size, and each lenslet samples a 54 cm square segment of the atmospherically aberrated wavefront to form a guide star image at a plate scale of 60 mu m/arcsec. Charge diffusion between adjacent detector pixels is small: the signal modulation in 0.7 arcsec seeing is reduced by only 10% compared to an ideal quad-cell with perfectly sharp boundaries.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 50 条
  • [21] Improved Wavefront Reconstruction and Correction Strategy for Adaptive Optics System With a Plenoptic Sensor
    Hu, Jintian
    Chen, Tao
    Lin, Xudong
    Wang, Liang
    An, Qichang
    Wang, Zhichong
    IEEE PHOTONICS JOURNAL, 2021, 13 (04):
  • [22] The pyramid wavefront sensor used in the closed-loop adaptive optics system
    Wang, Shengqian
    Wei, Kai
    Zheng, Wenjia
    Rao, Changhui
    ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
  • [23] Adaptive optics with an infrared pyramid wavefront sensor at Keck
    Bond, Charlotte Z.
    Cetre, Sylvain
    Lilley, Scott
    Wizinowich, Peter
    Mawet, Dimitri
    Chun, Mark
    Wetherell, Edward
    Jacobson, Shane
    Lockhart, Charles
    Warmbier, Eric
    Ragland, Sam
    Alvarez, Carlos
    Guyon, Olivier
    Goebel, Sean
    Delorme, Jacques-Robert
    Jovanovic, Nemanja
    Hall, Donald N.
    Wallace, James K.
    Taheri, Mojtaba
    Plantet, Cedric
    Chambouleyron, Vincent
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (03)
  • [24] Comparison of wavefront sensor models for simulation of adaptive optics
    Wu, Zhiwen
    Enmark, Anita
    Owner-Petersen, Mette
    Andersen, Torben
    OPTICS EXPRESS, 2009, 17 (22): : 20575 - 20583
  • [25] Lick Observatory Adaptive Optics wavefront sensor upgrades
    Palmer, David
    Gavel, Donald
    Gates, Elinor
    ADVANCES IN ADAPTIVE OPTICS II, PRS 1-3, 2006, 6272 : U460 - U469
  • [26] Retinal adaptive optics imaging with a pyramid wavefront sensor
    Brunner, Elisabeth
    Shatokhina, Julia
    Shirazi, Muhammad Faizan
    Drexler, Wolfgang
    Leitgeb, Rainer
    Pollreisz, Andreas
    Hitzenberger, Christoph K.
    Ramlau, Ronny
    Pircher, Michael
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (10): : 5969 - 5990
  • [27] Practical application of the geometric wavefront sensor for adaptive optics
    Pal, Saloni
    Lambert, Andrew
    Weddell, Stephen J.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 72 - 76
  • [28] Forecasting wavefront corrections in an adaptive optics system
    Hafeez, Rehan
    Archinuk, Finn
    Fabbro, Sebastien
    Teimoorinia, Hossen
    Veran, Jean-Pierre
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2022, 8 (02)
  • [29] A new wavefront of adaptive optics promises improvements
    Hogan, Hank
    Photonics Spectra, 2021, 55 (11) : 40 - 43
  • [30] Photonic lantern wavefront reconstruction in a multi-wavefront sensor single-conjugate adaptive optics system
    Sengupta, Aditya B.
    Diaz, Jordan
    Gerard, Benjamin L.
    Jensen-Clem, Rebecca
    Dillon, Daren
    DeMartino, Matthew
    Bundy, Kevin
    Cetre, Sylvain
    Chambouleyron, Vincent
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097