A correspondence principle

被引:1
|
作者
Hughes, Barry D. [1 ]
Ninham, Barry W. [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Appl Math, Canberra, ACT 0200, Australia
关键词
Classical analysis; Quantum mechanics; Statistical mechanics; Random walks and Levy flights; Quasicrystals; Casimir forces; DER-WAALS FORCES; CASIMIR FORCE; UNREASONABLE EFFECTIVENESS; PRECISION-MEASUREMENT; ATTRACTIVE FORCES; QUASI-CRYSTALS; DIFFRACTION; FAMILY;
D O I
10.1016/j.physa.2015.09.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A single mathematical theme underpins disparate physical phenomena in classical, quantum and statistical mechanical contexts. This mathematical "correspondence principle", a kind of wave particle duality with glorious realizations in classical and modern mathematical analysis, embodies fundamental geometrical and physical order, and yet in some sense sits on the edge of chaos. Illustrative cases discussed are drawn from classical and anomalous diffusion, quantum mechanics of single particles and ideal gases, quasicrystals and Casimir forces. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 517
页数:23
相关论文
共 50 条
  • [21] The E-correspondence principle
    Evans, George W.
    Honkapohja, Seppo
    ECONOMICA, 2007, 74 (293) : 33 - 50
  • [22] A stringy correspondence principle in cosmology
    Rama, S. Kalyana
    PHYSICS LETTERS B, 2006, 638 (2-3) : 100 - 104
  • [23] HEURISTICS AND THE GENERALIZED CORRESPONDENCE PRINCIPLE
    RADDER, H
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1991, 42 (02): : 195 - 226
  • [24] ANOMALOUS DIFFUSION AND THE CORRESPONDENCE PRINCIPLE
    RONCAGLIA, R
    BONCI, L
    WEST, BJ
    GRIGOLINI, P
    PHYSICAL REVIEW E, 1995, 51 (06): : 5524 - 5534
  • [25] QUANTUM ELECTRODYNAMICS AND CORRESPONDENCE PRINCIPLE
    STEHLE, P
    DEBARYSHE, PG
    PHYSICAL REVIEW, 1966, 152 (04): : 1135 - +
  • [26] Wedge paradox and a correspondence principle
    Markenscoff, X.
    Paukshto, M.
    Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1968): : 147 - 154
  • [27] CORRESPONDENCE PRINCIPLE FOR THE QUANTUM NET
    SELESNICK, SA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (10) : 1273 - 1292
  • [28] THE GLOBAL CORRESPONDENCE PRINCIPLE - A GENERALIZATION
    BHAGWATI, JN
    BRECHER, RA
    HATTA, T
    AMERICAN ECONOMIC REVIEW, 1987, 77 (01): : 124 - 132
  • [29] GENERALIZATION OF BOUNDARY CORRESPONDENCE PRINCIPLE
    ZELINSKY.YB
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1972, (08): : 689 - &
  • [30] The Correspondence Principle and the Understanding of Decoherence
    Sebastian Fortin
    Olimpia Lombardi
    Foundations of Physics, 2019, 49 : 1372 - 1393