A correspondence principle

被引:1
|
作者
Hughes, Barry D. [1 ]
Ninham, Barry W. [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Appl Math, Canberra, ACT 0200, Australia
关键词
Classical analysis; Quantum mechanics; Statistical mechanics; Random walks and Levy flights; Quasicrystals; Casimir forces; DER-WAALS FORCES; CASIMIR FORCE; UNREASONABLE EFFECTIVENESS; PRECISION-MEASUREMENT; ATTRACTIVE FORCES; QUASI-CRYSTALS; DIFFRACTION; FAMILY;
D O I
10.1016/j.physa.2015.09.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A single mathematical theme underpins disparate physical phenomena in classical, quantum and statistical mechanical contexts. This mathematical "correspondence principle", a kind of wave particle duality with glorious realizations in classical and modern mathematical analysis, embodies fundamental geometrical and physical order, and yet in some sense sits on the edge of chaos. Illustrative cases discussed are drawn from classical and anomalous diffusion, quantum mechanics of single particles and ideal gases, quasicrystals and Casimir forces. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 517
页数:23
相关论文
共 50 条