On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains

被引:144
|
作者
Rychkov, VS [1 ]
机构
[1] Univ Jena, Inst Math, D-07743 Jena, Germany
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1112/S0024610799007723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The restrictions B-pq(s)(Omega) and F-pq(s)(Omega) of the Besov and Triebel-Lizorkin spaces of tempered distributions B-pq(s)(R-n) and F-pq(s)(R-n) to Lipschitz domains Omega subset of R-n are studied. For general values of parameters (s is an element of R, p > 0, q > 0) a 'universal' linear bounded extension operator from B-pq(s)(Omega) and F-pq(s)(Omega) into the corresponding spaces on R-n is constructed. The construction is based on a new variant of the Calderon reproducing formula with kernels supported in a fixed cone. Explicit characterizations of the elements of B-pq(s)(Omega) and F-pq(s)(Omega) in terms of their values in Omega are also obtained.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 50 条
  • [1] Traces of Besov and Triebel-Lizorkin spaces on domains
    Schneider, Cornelia
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 572 - 586
  • [2] THE BESOV AND TRIEBEL-LIZORKIN SPACES WITH HIGH ORDER ON THE LIPSCHITZ CURVES
    D.G.Deng
    Y.S.Han
    [J]. Analysis in Theory and Applications, 1993, (04) : 89 - 106
  • [3] INEQUALITIES IN HOMOGENEOUS TRIEBEL-LIZORKIN AND BESOV-LIPSCHITZ SPACES
    Wang, Lifeng
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1318 - 1393
  • [4] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    [J]. Analysis in Theory and Applications, 2008, 24 (04) : 336 - 350
  • [5] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522
  • [6] Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the caseq<1
    H. Q. Bui
    M. Paluszyński
    M. Taibleson
    [J]. Journal of Fourier Analysis and Applications, 1997, 3 : 837 - 846
  • [7] Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces
    Pineda, Ebner
    Urbina, Wilfredo
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 529 - 564
  • [8] Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure
    Pineda, Ebner
    Rodriguez, Luz
    Urbina, Wilfredo
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 27128 - 27150
  • [9] HERMITE BESOV AND TRIEBEL-LIZORKIN SPACES AND APPLICATIONS
    Ly, Fu Ken
    Naibo, Virginia
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 243 - 263
  • [10] Homogeneity Property of Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    Vybiral, Jan
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,