Continued fraction algorithm for Sturmian colorings of trees
被引:0
|
作者:
Kim, Dong Han
论文数: 0引用数: 0
h-index: 0
机构:
Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South KoreaDongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
Kim, Dong Han
[1
]
Lim, Seonhee
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Kwanak Ro 1, Seoul 08826, South KoreaDongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
Lim, Seonhee
[2
]
机构:
[1] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Kwanak Ro 1, Seoul 08826, South Korea
Factor complexity b(n) (phi) for a vertex coloring phi of a regular tree is the number of classes of n-balls up to color-preserving automorphisms. Sturmian colorings are colorings of minimal unbounded factor complexity b(n) (phi) = n + 2. In this article, we prove an induction algorithm for Sturmian colorings using colored balls in a way analogous to the continued fraction algorithm for Sturmian words. Furthermore, we characterize Sturmian colorings in terms of the data appearing in the induction algorithm.
机构:
Lab Informat Grenoble, UMR 5217, F-38041 Grenoble, France
Grenoble Univ, F-38041 Grenoble, FranceLab Informat Grenoble, UMR 5217, F-38041 Grenoble, France
Gast, Nicolas
Gaujal, Bruno
论文数: 0引用数: 0
h-index: 0
机构:
Lab Informat Grenoble, UMR 5217, F-38041 Grenoble, France
INRIA Grenoble Rhone Alpes, F-38334 Saint Ismier, FranceLab Informat Grenoble, UMR 5217, F-38041 Grenoble, France
机构:
Department of Mathematics, University College London, London,WC1E 6BT, United Kingdom
Department of Physics, New York University, 726 Broadway, New York,NY,10003, United StatesDepartment of Mathematics, University College London, London,WC1E 6BT, United Kingdom