Continued fraction algorithm for Sturmian colorings of trees

被引:0
|
作者
Kim, Dong Han [1 ]
Lim, Seonhee [2 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Kwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
COMPLEXITY;
D O I
10.1017/etds.2017.127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor complexity b(n) (phi) for a vertex coloring phi of a regular tree is the number of classes of n-balls up to color-preserving automorphisms. Sturmian colorings are colorings of minimal unbounded factor complexity b(n) (phi) = n + 2. In this article, we prove an induction algorithm for Sturmian colorings using colored balls in a way analogous to the continued fraction algorithm for Sturmian words. Furthermore, we characterize Sturmian colorings in terms of the data appearing in the induction algorithm.
引用
收藏
页码:2541 / 2569
页数:29
相关论文
共 50 条
  • [31] CONTINUED-FRACTION METHODS FOR RANDOM-WALKS ON IN AND ON TREES
    GERL, P
    LECTURE NOTES IN MATHEMATICS, 1984, 1064 : 131 - 146
  • [32] A first investigation of Sturmian trees
    Berstel, Jean
    Boasson, Luc
    Carton, Olivier
    Fagnot, Isabelle
    STACS 2007, PROCEEDINGS, 2007, 4393 : 73 - +
  • [33] RECONSTRUCTION FOR COLORINGS ON TREES
    Bhatnagar, Nayantara
    Vera, Juan
    Vigoda, Eric
    Weitz, Dror
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 809 - 826
  • [34] ON THE DOMINATOR COLORINGS IN TREES
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 677 - 683
  • [35] On Hamiltonian Colorings of Trees
    Bantva, Devsi
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 49 - 60
  • [36] Nonrepetitive colorings of trees
    Bresar, B.
    Grytczuk, J.
    Klavzar, S.
    Niwczyk, S.
    Peterin, I.
    DISCRETE MATHEMATICS, 2007, 307 (02) : 163 - 172
  • [37] A linear algorithm for finding total colorings of partial k-trees
    Isobe, S
    Zhou, X
    Nishizeki, T
    ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 347 - 356
  • [38] Infinite labeled trees: From rational to Sturmian trees
    Gast, Nicolas
    Gaujal, Bruno
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) : 1146 - 1166
  • [39] CRYPTANALYSIS OF OKAMOTO CRYPTOSYSTEMS WITH CONTINUED-FRACTION ALGORITHM
    LI, DX
    LI, DW
    ELECTRONICS LETTERS, 1991, 27 (22) : 2014 - 2015
  • [40] A simple algorithm for expanding a power series as a continued fraction
    Sokal, Alan D.
    arXiv, 2022,