Continued fraction algorithm for Sturmian colorings of trees

被引:0
|
作者
Kim, Dong Han [1 ]
Lim, Seonhee [2 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Kwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
COMPLEXITY;
D O I
10.1017/etds.2017.127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor complexity b(n) (phi) for a vertex coloring phi of a regular tree is the number of classes of n-balls up to color-preserving automorphisms. Sturmian colorings are colorings of minimal unbounded factor complexity b(n) (phi) = n + 2. In this article, we prove an induction algorithm for Sturmian colorings using colored balls in a way analogous to the continued fraction algorithm for Sturmian words. Furthermore, we characterize Sturmian colorings in terms of the data appearing in the induction algorithm.
引用
收藏
页码:2541 / 2569
页数:29
相关论文
共 50 条
  • [21] Transcendence of Sturmian or morphic continued fractions
    Allouche, JP
    Davison, JL
    Queffélec, M
    Zamboni, LQ
    JOURNAL OF NUMBER THEORY, 2001, 91 (01) : 39 - 66
  • [22] ON THE LEVY CONSTANTS OF STURMIAN CONTINUED FRACTIONS
    Bugeaud, Yann
    Kim, Dong Han
    Lee, Seul Bee
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 315 (01) : 1 - 25
  • [23] Cubic approximation to Sturmian continued fractions
    Schleischitz, Johannes
    JOURNAL OF NUMBER THEORY, 2018, 184 : 270 - 299
  • [24] CONTINUED FRACTION ALGORITHM FOR REAL ALGEBRAIC NUMBERS
    CANTOR, DG
    ZIMMER, HG
    GALYEAN, PH
    MATHEMATICS OF COMPUTATION, 1972, 26 (119) : 785 - &
  • [25] Odd-odd continued fraction algorithm
    Kim, Dong Han
    Lee, Seul Bee
    Liao, Lingmin
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 323 - 344
  • [26] Odd-odd continued fraction algorithm
    Dong Han Kim
    Seul Bee Lee
    Lingmin Liao
    Monatshefte für Mathematik, 2022, 198 : 323 - 344
  • [27] GENERALIZATION OF CONTINUED FRACTION ALGORITHM .2.
    GUTING, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 281 : 184 - 198
  • [28] GENERALIZATION OF CONTINUED FRACTION ALGORITHM .1.
    GUTING, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 (NOV28): : 165 - 173
  • [30] GENERALIZATION OF CONTINUED FRACTION ALGORITHM .1.
    GUTING, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 : 165 - 173