Argon gas, by near-ambient pressure XPS

被引:6
|
作者
Patel, Dhananjay I. [1 ]
Bahr, Stephan [2 ]
Dietrich, Paul [2 ]
Meyer, Michael [2 ]
Thissen, Andreas [2 ]
Linford, Matthew R. [1 ]
机构
[1] Brigham Young Univ, Dept Chem & Biochem, C100 BNSN, Provo, UT 84602 USA
[2] SPECS Surface Nano Anal GmbH, Voltastr 5, D-13355 Berlin, Germany
来源
SURFACE SCIENCE SPECTRA | 2019年 / 26卷 / 01期
关键词
near-ambient pressure x-ray photoelectron spectroscopy; NAP-XPS; XPS; water vapor; PHOTOELECTRON-SPECTROSCOPY;
D O I
10.1116/1.5110408
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Near-ambient pressure-x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., greater than 2500Pa. With NAP-XPS, XPS can analyze moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, 2s, 2p, 3s, 3p, and the Auger LMM NAP-XPS spectra from argon gas, a material that could not be analyzed at moderate pressures by conventional methods. A small N 1s signal from residual nitrogen gas in the chamber is also present in the survey spectrum.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Operando observation of the dynamic SEI formation on a carbonaceous electrode by near-ambient pressure XPS
    Capone, F. G.
    Sottmann, J.
    Meunier, V.
    Perez Ramirez, L.
    Grimaud, A.
    Iadecola, A.
    Scardamaglia, M.
    Rueff, J. -p.
    Dedryvere, R.
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1509 - 1519
  • [32] Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS
    Kjaervik, Marit
    Schwibbert, Karin
    Dietrich, Paul
    Thissen, Andreas
    Unger, Wolfgang E. S.
    SURFACE AND INTERFACE ANALYSIS, 2018, 50 (11) : 996 - 1000
  • [33] Near-ambient pressure velocity map imaging
    Chien, Tzu-En
    Hohmann, Lea
    Harding, Dan J.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (03):
  • [34] Near-Ambient Pressure XPS and NEXAFS Study of a Superbasic Ionic Liquid with CO2
    Cole, Jordan
    Henderson, Zoe
    Thomas, Andrew G.
    Compean-Gonzalez, Claudia L.
    Greer, Adam J.
    Hardacre, Christopher
    Venturini, Federica
    Garzon, Wilson Quevedo
    Ferrer, Pilar
    Grinter, David C.
    Held, Georg
    Syres, Karen L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (41): : 22778 - 22785
  • [35] Low-temperature gas sensing mechanism in β-Ga2O3 nanostructures revealed by near-ambient pressure XPS
    Yatskiv, R.
    Vorochta, M.
    Basinova, N.
    Dinhova, T. N.
    Maixner, J.
    Grym, J.
    APPLIED SURFACE SCIENCE, 2024, 663
  • [36] Near Ambient Pressure XPS at ALBA
    Perez-Dieste, V.
    Aballe, L.
    Ferrer, S.
    Nicolas, J.
    Escudero, C.
    Milan, A.
    Pellegrin, E.
    11TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI 2012), 2013, 425
  • [37] Tetrapyrroles at near-ambient pressure: porphyrins and phthalocyanines beyond the pressure gap
    Vesselli, Erik
    JOURNAL OF PHYSICS-MATERIALS, 2020, 3 (02):
  • [38] Inelastic electron scattering by the gas phase in near ambient pressure XPS measurements
    Pielsticker, Lukas
    Nicholls, Rachel
    Beeg, Sebastian
    Hartwig, Caroline
    Klihm, Gudrun
    Schlogl, Robert
    Tougaard, Sven
    Greiner, Mark
    SURFACE AND INTERFACE ANALYSIS, 2021, 53 (07) : 605 - 617
  • [39] Fluorescence of BODIPY dyes in gas phase at near-ambient conditions
    Maryewski, Xenia A.
    Larkin, Denis Y.
    Samoilichenko, Yuri V.
    Gvozdev, Daniil A.
    Korshun, Vladimir A.
    Ustinov, Alexey V.
    DYES AND PIGMENTS, 2024, 231
  • [40] A mini review of in situ near-ambient pressure XPS studies on non-noble, late transition metal catalysts
    Zhong, Liping
    Chen, Dingkai
    Zafeiratos, Spyridon
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (15) : 3851 - 3867