Argon gas, by near-ambient pressure XPS

被引:6
|
作者
Patel, Dhananjay I. [1 ]
Bahr, Stephan [2 ]
Dietrich, Paul [2 ]
Meyer, Michael [2 ]
Thissen, Andreas [2 ]
Linford, Matthew R. [1 ]
机构
[1] Brigham Young Univ, Dept Chem & Biochem, C100 BNSN, Provo, UT 84602 USA
[2] SPECS Surface Nano Anal GmbH, Voltastr 5, D-13355 Berlin, Germany
来源
SURFACE SCIENCE SPECTRA | 2019年 / 26卷 / 01期
关键词
near-ambient pressure x-ray photoelectron spectroscopy; NAP-XPS; XPS; water vapor; PHOTOELECTRON-SPECTROSCOPY;
D O I
10.1116/1.5110408
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Near-ambient pressure-x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., greater than 2500Pa. With NAP-XPS, XPS can analyze moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, 2s, 2p, 3s, 3p, and the Auger LMM NAP-XPS spectra from argon gas, a material that could not be analyzed at moderate pressures by conventional methods. A small N 1s signal from residual nitrogen gas in the chamber is also present in the survey spectrum.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Calcite (CaCO3), by near-ambient pressure XPS
    Roychowdhury, Tuhin
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (01):
  • [22] Printed and unprinted office paper, by near-ambient pressure XPS
    Shah, Dhruv
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (02):
  • [23] New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS
    Hozak, Pavel
    Vorokhta, Mykhailo
    Khalakhan, Ivan
    Jarkovska, Katerina
    Cibulkova, Jana
    Fitl, Premysl
    Vlcek, Jan
    Fara, Jan
    Tomecek, David
    Novotny, Michal
    Vorokhta, Maryna
    Lancok, Jan
    Matolinova, Iva
    Vrnata, Martin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (49): : 29739 - 29749
  • [24] Poly(γ-benzyl l-glutamate), by near-ambient pressure XPS
    Jain, Varun
    Wheeler, Joshua J.
    Ess, Daniel H.
    Noack, Sebastian
    Vacogne, Charlotte D.
    Schlaad, Helmut
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (02):
  • [25] Bovine serum albumin, aqueous solution, by near-ambient pressure XPS
    Jain, Varun
    Kjaervik, Marit
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (01):
  • [26] Poly(L-lactic acid), by near-ambient pressure XPS
    Patel, Dhananjay I.
    Noack, Sebastian
    Vacogne, Charlotte D.
    Schlaad, Helmut
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (02):
  • [27] Effects of background gas composition and pressure on 1,4-polymyrcene (and polytetrafluoroethylene) spectra in near-ambient pressure XPS
    Patel, Dhananjay I.
    Matic, Aleksandar
    Schlaad, Helmut
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Tougaard, Sven
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2020, 27 (01):
  • [28] Influence of oxygen vacancies on the performance of SnO2 gas sensing by near-ambient pressure XPS studies
    Liu, Lin
    Wang, Yingyi
    Guan, Kejie
    Liu, Yinhang
    Li, Yifan
    Sun, Fuqin
    Wang, Xiaowei
    Zhang, Cheng
    Feng, Simin
    Zhang, Ting
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [29] In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS
    Dai, Jiuxiang
    Gong, Zhongmiao
    Xu, Shitong
    Cui, Yi
    Yao, Meiyi
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (03)
  • [30] Probing Lithium-Ion Battery Electrolytes with Laboratory Near-Ambient Pressure XPS
    Dietrich, Paul M.
    Gehrlein, Lydia
    Maibach, Julia
    Thissen, Andreas
    CRYSTALS, 2020, 10 (11): : 1 - 13