The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*

被引:2
|
作者
Sapagovas, Mifodijus [1 ]
Ciupaila, Regimantas [2 ]
Joksiene, Zivile [3 ,4 ]
机构
[1] Vilnius State Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, LT-10223 Vilnius, Lithuania
[3] Lithuanian Univ Hlth Sci, LT-50009 Kaunas, Lithuania
[4] Vytautas Magnus Univ, LT-44404 Kaunas, Lithuania
关键词
eigenvalue problem; nonlocal integral conditions; difference schemes; computational experiment; STABILITY; EQUATION; SCHEMES;
D O I
10.1007/s10986-014-9247-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider conditions for the existence of the eigenvalue lambda = 0 in the eigenvalue problem for a differential operator with a variable coefficient and integral conditions. We analyze how these conditions depend on such properties of the coefficient p(x) as monotonicity and symmetry and observe some other properties of the spectrum of the eigenvalue problem. Particularly, we show by a numerical experiment that the fundamental theorem on the increase of the eigenvalues in the case of increasing coefficient p(x) is not valid for the eigenvalue problem with nonlocal conditions.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条
  • [1] The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*
    Mifodijus Sapagovas
    Regimantas Čiupaila
    Živilė Jokšiene
    Lithuanian Mathematical Journal, 2014, 54 : 345 - 355
  • [2] Numerical Analysis of the Eigenvalue Problem for One-Dimensional Differential Operator with Nonlocal Integral Conditions
    Sajavicius, S.
    Sapagovas, M.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2009, 14 (01): : 115 - 122
  • [3] On One Eigenvalue Problem for a Differential Operator with Integral Conditions
    Jeseviciute, Z.
    DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009), 2009, : 99 - 105
  • [4] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [5] The eigenvalue problem of one-dimensional Dirac operator
    Jacek Karwowski
    Artur Ishkhanyan
    Andrzej Poszwa
    Theoretical Chemistry Accounts, 2020, 139
  • [6] EIGENVALUE PROBLEM FOR DIFFERENTIAL CAUCHY-RIEMANN OPERATOR WITH NONLOCAL BOUNDARY CONDITIONS
    Imanbaev, N. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (01): : 25 - 36
  • [7] A problem with nonlocal conditions for a one-dimensional parabolic equation
    Beylin, A. B.
    Bogatov, A., V
    Pulkina, L. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2022, 26 (02): : 380 - 395
  • [8] Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrodinger Operator
    Sekisaka, Ayuki
    Nii, Shunsaku
    MATHEMATICAL CHALLENGES IN A NEW PHASE OF MATERIALS SCIENCE, 2016, 166 : 145 - 157
  • [9] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    I. L. Pokrovski
    Differential Equations, 2018, 54 : 1363 - 1370
  • [10] A new eigenvalue problem for the difference operator with nonlocal conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Jakubeliene, Kristina
    Rutkauskas, Stasys
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 462 - 484