The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*

被引:2
|
作者
Sapagovas, Mifodijus [1 ]
Ciupaila, Regimantas [2 ]
Joksiene, Zivile [3 ,4 ]
机构
[1] Vilnius State Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, LT-10223 Vilnius, Lithuania
[3] Lithuanian Univ Hlth Sci, LT-50009 Kaunas, Lithuania
[4] Vytautas Magnus Univ, LT-44404 Kaunas, Lithuania
关键词
eigenvalue problem; nonlocal integral conditions; difference schemes; computational experiment; STABILITY; EQUATION; SCHEMES;
D O I
10.1007/s10986-014-9247-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider conditions for the existence of the eigenvalue lambda = 0 in the eigenvalue problem for a differential operator with a variable coefficient and integral conditions. We analyze how these conditions depend on such properties of the coefficient p(x) as monotonicity and symmetry and observe some other properties of the spectrum of the eigenvalue problem. Particularly, we show by a numerical experiment that the fundamental theorem on the increase of the eigenvalues in the case of increasing coefficient p(x) is not valid for the eigenvalue problem with nonlocal conditions.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条