On-Chip Environmental Sensors for Bias Drift Compensation

被引:0
|
作者
Guney, Metin G. [1 ]
Chung, Vincent Pey J. [1 ]
Mukherjee, Tamal [1 ]
Fedder, Gary K. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
关键词
MEMS; CMOS-MEMS; environmental sensors; inertial sensors; drift compensation; ACCELEROMETER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the simulation, design and functional verification of high resolution on-chip environmental sensors in a 0.18 mu m CMOS process. The environmental sensors include n-type piezoresistive stress sensors with measured 0.9 kPa normal stress resolution, p-type piezoresistive stress sensors with 4.5 kPa normal stress resolution and Proportional to Absolute Temperature (PTAT) sensors with 6.5 mK resolution. The full accelerometer system on chip integrates a CMOS-MEMS accelerometer array, a pre-amplifier and the sensors. Finite element analysis provides an estimate of the required temperature and stress resolution for stabilizing the accelerometer scale factor up to 1 ppm, which informs the required noise floor for the environmental sensors. Test results from the designed sensors match the expected resolution closely.
引用
收藏
页码:564 / 566
页数:3
相关论文
共 50 条
  • [31] ON-CHIP ROM CUTS BANDGAP REFERENCE TEMPERATURE DRIFT
    VARGHA, D
    ELECTRONIC PRODUCT DESIGN, 1994, 15 (12): : 23 - 24
  • [32] Advances in integrated hollow waveguides for on-chip sensors
    Hawkins, Aaron R.
    Lunt, Evan J.
    Holmes, Matthew R.
    Phillips, Brian S.
    Yin, Dongliang
    Rudenko, Mikhail
    Wu, Bin
    Schmidt, Holger
    MICROMACHINING TECHNOLOGY FOR MICRO-OPTICS AND NANO-OPTICS V AND MICROFABRICATION PROCESS TECHNOLOGY XII, 2007, 6462
  • [33] Compact On-chip Multiplexed Photonic Gas Sensors
    Xia, Zhixuan
    Eftekhar, Ali Asghar
    Gottfried, David S.
    Li, Qing
    Adibi, Ali
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [34] On-chip infrared sensors: redefining the benefits of scaling
    Kita, Derek
    Lin, Hongtao
    Agarwal, Anu
    Yadav, Anupama
    Richardson, Kathleen
    Luzinov, Igor
    Gu, Tian
    Hu, Juejun
    FRONTIERS IN BIOLOGICAL DETECTION: FROM NANOSENSORS TO SYSTEMS IX, 2017, 10081
  • [35] On-chip squeezed light could improve sensors
    不详
    PHOTONICS SPECTRA, 2013, 47 (10) : 23 - 24
  • [36] Fully On-Chip Temperature, Process, and Voltage Sensors
    Chen, Shi-Wen
    Chang, Ming-Hung
    Hsieh, Wei-Chih
    Hwang, Wei
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 897 - 900
  • [37] Toward On-Chip Mid-Infrared Sensors
    Sieger, Markus
    Mizaikoff, Boris
    ANALYTICAL CHEMISTRY, 2016, 88 (11) : 5562 - 5573
  • [38] Compensation for the drift-like terms caused by environmental fluctuations in the responses of chemoresistive gas sensors
    Hossein-Babaei, F.
    Ghafarinia, V.
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 143 (02): : 641 - 648
  • [39] Various On-Chip Sensors with Microfluidics for Biological Applications
    Lee, Hun
    Xu, Linfeng
    Koh, Domin
    Nyayapathi, Nikhila
    Oh, Kwang W.
    SENSORS, 2014, 14 (09): : 17008 - 17036
  • [40] ON-CHIP ANTENNA STRUCTURES FOR BIOMEDICAL IMPLANTABLE SENSORS
    Aquilino, F.
    Della Corte, F. G.
    PROCEEDINGS OF THE 13TH ITALIAN CONFERENCE ON SENSORS AND MICROSYSTEMS, 2009, : 255 - 258