Imputation of incomplete data using adaptive ellipsoids with linear regression

被引:3
|
作者
Yao, Leehter [1 ]
Weng, Kuei-Sung [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
关键词
Incomplete data; fuzzy clustering; particle swarm optimization; Gustafson-Kessel algorithm; linear regression; MISSING VALUE ESTIMATION; CLUSTER SUBSTRUCTURE; VALUES; CLASSIFICATION; ALGORITHM;
D O I
10.3233/IFS-151592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An efficient scheme for imputing the features missing of incomplete data is proposed in this paper. The missing features are imputed based on a group of nearest complete data in the space of residual features of the incomplete data to be recovered. In order to find the complete data points in the space of residual features, an algorithm called the evolutionary Gustafson-Kessel algorithm (EGKA) is proposed that learns the ellipsoid to adaptively cluster the complete data points with the recovered incomplete data points. A linear regression model is utilized to impute the missing features based on the complete data clustered by the ellipsoid learned by the EGKA.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 50 条
  • [41] Multiple Imputation for Incomplete Data in Epidemiologic Studies
    Harel, Ofer
    Mitchell, Emily M.
    Perkins, Neil J.
    Cole, Stephen R.
    Tchetgen, Eric J. Tchetgen
    Sun, BaoLuo
    Schisterman, Enrique F.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (03) : 576 - 584
  • [42] CONCENTRATION ELLIPSOIDS, THEIR PLANES OF SUPPORT, AND THE LINEAR REGRESSION MODEL
    Rogers, Alan J.
    [J]. ECONOMETRIC REVIEWS, 2013, 32 (02) : 220 - 243
  • [43] An imputation strategy for incomplete longitudinal ordinal data
    Demirtas, Hakan
    Hedeker, Donald
    [J]. STATISTICS IN MEDICINE, 2008, 27 (20) : 4086 - 4093
  • [44] FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRESSION PARAMETERS
    ALBERT, A
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06): : 1602 - &
  • [45] Estimation using the linear regression model with incomplete ellipsoidal restrictions
    Gross, J
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1996, 43 (01) : 81 - 85
  • [46] A new imputation method for incomplete binary data
    Subasi, Munevver Mine
    Subasi, Ersoy
    Anthony, Martin
    Hammer, Peter L.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (10) : 1040 - 1047
  • [47] Usefulness of imputation for the analysis of incomplete otoneurologic data
    Laurikkala, J
    Kentala, E
    Juhola, M
    Pyykkö, I
    Lammi, S
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2000, 58 : 235 - 242
  • [48] Imputation by PLS regression for linear mixed models
    Guyon, Emilie
    Pommeret, Denys
    [J]. JOURNAL OF THE SFDS, 2011, 152 (04): : 30 - 46
  • [49] Adaptive SOMMI (Self Organizing Map Multiple Imputation) base on Variation Weight for Incomplete Data
    KhusnulKhotimah, Bain
    Miswanto
    Suprajitno, Herry
    [J]. PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 82 - 87
  • [50] Genetic Programming for Imputation Predictor Selection and Ranking in Symbolic Regression with High-Dimensional Incomplete Data
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. AI 2019: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11919 : 523 - 535