Imputation by PLS regression for linear mixed models

被引:0
|
作者
Guyon, Emilie [1 ,2 ]
Pommeret, Denys [1 ]
机构
[1] CNRS Marseille, IML, Case 907,Campus Luminy, F-13288 Marseille 9, France
[2] ORS Paca, F-13006 Marseille, France
来源
JOURNAL OF THE SFDS | 2011年 / 152卷 / 04期
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of handling missing data in linear mixed models with correlated covariates is considered when the missing mechanism concerns both the dependent variable and the design matrix. We propose an imputation algorithm combining multiple imputation and Partial Least Squares (PLS) regression. The method relies on two steps: removing random effects, fixed effects are first imputed and PLS components are constructed on the corresponding complete case. The dependent variable is then imputed inside the linear mixed model obtained by adding the random effects to PLS components. The method is applied on simulations and on real data.
引用
收藏
页码:30 / 46
页数:17
相关论文
共 50 条
  • [1] Imputation and variable selection in linear regression models with missing covariates
    Yang, XW
    Belin, TR
    Boscardin, WJ
    [J]. BIOMETRICS, 2005, 61 (02) : 498 - 506
  • [2] PLS generalised linear regression
    Bastien, P
    Vinzi, VE
    Tenenhaus, M
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (01) : 17 - 46
  • [3] Estimation in generalized linear mixed models with multiple imputation.
    Chen, YH
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 479 - 479
  • [4] Imputation of Household Survey Data Using Linear Mixed Models
    Lago, Luise Patricia
    Clark, Robert Graham
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (02) : 169 - 187
  • [5] Empirical likelihood for linear regression models under imputation for missing responses
    Wang, QH
    Rao, JNK
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04): : 597 - 608
  • [6] Bayesian imputation of time-varying covariates in linear mixed models
    Erler, Nicole S.
    Rizopoulos, Dimitris
    Jaddoe, Vincent W. V.
    Franco, Oscar H.
    Lesaffre, Emmanuel M. E. H.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 555 - 568
  • [7] Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates
    Ryo Kato
    Takahiro Hoshino
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 803 - 825
  • [8] Imputation based statistical inference for partially linear quantile regression models with missing responses
    Zhao, Peixin
    Tang, Xinrong
    [J]. METRIKA, 2016, 79 (08) : 991 - 1009
  • [9] Imputation based statistical inference for partially linear quantile regression models with missing responses
    Peixin Zhao
    Xinrong Tang
    [J]. Metrika, 2016, 79 : 991 - 1009
  • [10] Stepwise regression in mixed quantitative linear models with autocorrelated errors
    Alpargu, G
    Dutilleul, P
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2006, 35 (01) : 79 - 104