Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

被引:3
|
作者
d'Aquino, M. [1 ]
Capuano, F. [2 ]
Coppola, G. [2 ]
Serpico, C. [3 ]
Mayergoyz, I. D. [4 ]
机构
[1] Univ Naples Parthenope, Engn Dept, I-80143 Naples, Italy
[2] Univ Naples Federico II, Dept Ind Engn, I-80125 Naples, Italy
[3] Univ Naples Federico II, DIETI, I-80125 Naples, Italy
[4] Univ Maryland, ECE Dept, College Pk, MD 20742 USA
关键词
RUNGE-KUTTA SCHEMES; HAMILTONIAN-SYSTEMS; RELAXATION; EQUATION; MICROMAGNETICS;
D O I
10.1063/1.5007340
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods. (C) 2017 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Magnetization dynamics in holographic ferromagnets: Landau-Lifshitz equation from Yang-Mills fields
    Yokoi, Naoto
    Sato, Koji
    Saitoh, Eiji
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [43] A mixed mid-point Runge-Kutta like scheme for the integration of Landau-Lifshitz equation
    Rahim, Arbab
    Ragusa, Carlo
    Jan, Bilal
    Khan, Omar
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [44] Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field
    Cimrák, I
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 611 - 634
  • [45] Landau-Lifshitz equation for magnetization dynamics of thin films: Failure of the linear approximation at low effective fields
    Seddaoui, D.
    Loranger, S.
    Menard, D.
    Yelon, A.
    PHYSICAL REVIEW B, 2010, 82 (13):
  • [46] Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics
    d'Aquino, M
    Serpico, C
    Coppola, G
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [47] Domain-wall dynamics in the Landau-Lifshitz magnet and the classical-quantum correspondence for spin transport
    Gamayun, Oleksandr
    Miao, Yuan
    Ilievski, Enej
    PHYSICAL REVIEW B, 2019, 99 (14)
  • [48] Numerical integration of Landau-Lifshitz-Gilbert equation based on the midpoint rule
    d'Aquino, M
    Serpico, C
    Miano, G
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [49] An Adaptive Moving Mesh Method for Simulating Finite-Time Blowup Solutions of the Landau-Lifshitz -Gilbert Equation
    Fang, Zheyue
    Wang, Xiaoping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (03) : 601 - 635
  • [50] Efficient Error-Correcting Pooling Designs Constructed from Pseudo-Symplectic Spaces Over a Finite Field
    Li, Zengti
    Gao, Suogang
    Du, Hongjie
    Zou, Feng
    Wu, Weili
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2010, 17 (10) : 1413 - 1423