Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data

被引:21
|
作者
Junttila, Sofia [1 ]
Kelly, Julia [2 ]
Kljun, Natascha [2 ]
Aurela, Mika [3 ]
Klemedtsson, Leif [4 ]
Lohila, Annalea [3 ,5 ]
Nilsson, Mats B. [6 ]
Rinne, Janne [1 ]
Tuittila, Eeva-Stiina [7 ]
Vestin, Patrik [1 ]
Weslien, Per [4 ]
Eklundh, Lars [1 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosystem Sci, S-22362 Lund, Sweden
[2] Lund Univ, Ctr Environm & Climate Sci, S-22362 Lund, Sweden
[3] Finnish Meteorol Inst, Erik Palmenin Aukio 1, Helsinki 00560, Finland
[4] Univ Gothenburg, Dept Earth Sci, S-40530 Gothenburg, Sweden
[5] Univ Helsinki, Inst Atmospher & Earth Syst Res INAR Phys, POB 64, Helsinki 00014, Finland
[6] Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden
[7] Univ Eastern Finland, Sch Forest Sci, Joensuu 80101, Finland
关键词
ecosystem respiration (ER); footprint analysis; gross primary production (GPP); net ecosystem exchange (NEE); peatland; Sentinel-2; upscaling;
D O I
10.3390/rs13040818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R-2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R-2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes
    Watts, J. D.
    Kimball, J. S.
    Parmentier, F. J. W.
    Sachs, T.
    Rinne, J.
    Zona, D.
    Oechel, W.
    Tagesson, T.
    Jackowicz-Korczynski, M.
    Aurela, M.
    [J]. BIOGEOSCIENCES, 2014, 11 (07) : 1961 - 1980
  • [2] A coupled model of land surface CO2 and energy fluxes using remote sensing data
    Zhan, X
    Kustas, WP
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2001, 107 (02) : 131 - 152
  • [3] CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data
    Valerio, Aline M.
    Kampel, Milton
    Ward, Nicholas D.
    Sawakuchi, Henrique O.
    Cunha, Alan C.
    Richey, Jeffrey E.
    [J]. CONTINENTAL SHELF RESEARCH, 2021, 215
  • [4] Data-Constrained Projections of Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated CO2 and Warming
    Ma, Shuang
    Jiang, Jiang
    Huang, Yuanyuan
    Shi, Zheng
    Wilson, Rachel M.
    Ricciuto, Daniel
    Sebestyen, Stephen D.
    Hanson, Paul J.
    Luo, Yiqi
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (11) : 2841 - 2861
  • [5] Modeling CO2, water vapor and sensible heat fluxes over land surface using remote sensing data
    Zhan, X
    Kustas, WP
    [J]. 22ND CONFERENCE ON AGRICULTURAL & FOREST METEOROLOGY WITH SYMPOSIUM ON FIRE & FOREST METEOROLOGY/12TH CONFERENCE ON BIOMETEOROLOGY & AEROBIOLOGY, 1996, : J85 - J88
  • [6] Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression
    Ueyama, Masahito
    Ichii, Kazuhito
    Iwata, Hiroki
    Euskirchen, Eugenie S.
    Zona, Donatella
    Rocha, Adrian V.
    Harazono, Yoshinobu
    Iwama, Chie
    Nakai, Taro
    Oechel, Walter C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2013, 118 (03) : 1266 - 1281
  • [7] Peatland Delineation Using Remote Sensing Data in Sumatera Island
    Sencaki, Dionysius B.
    Gandharum, Aju
    Dayuf, Muhammad J.
    Sumargana, Lena
    [J]. 2018 IEEE ASIA-PACIFIC CONFERENCE ON GEOSCIENCE, ELECTRONICS AND REMOTE SENSING TECHNOLOGY (AGERS), 2018, : 7 - 12
  • [8] Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
    Dannenberg, Matthew P.
    Barnes, Mallory L.
    Smith, William K.
    Johnston, Miriam R.
    Meerdink, Susan K.
    Wang, Xian
    Scott, Russell L.
    Biederman, Joel A.
    [J]. BIOGEOSCIENCES, 2023, 20 (02) : 383 - 404
  • [9] Estimating northern peatland CO2 exchange from MODIS time series data
    Schubert, Per
    Eklundh, Lars
    Lund, Magnus
    Nilsson, Mats
    [J]. REMOTE SENSING OF ENVIRONMENT, 2010, 114 (06) : 1178 - 1189
  • [10] CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem
    Manuel Acosta
    Radek Juszczak
    Bogdan Chojnicki
    Marian Pavelka
    Kateřina Havránková
    Jacek Lesny
    Lenka Krupková
    Marek Urbaniak
    Kateřina Machačová
    Janusz Olejnik
    [J]. Wetlands, 2017, 37 : 423 - 435