Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data

被引:21
|
作者
Junttila, Sofia [1 ]
Kelly, Julia [2 ]
Kljun, Natascha [2 ]
Aurela, Mika [3 ]
Klemedtsson, Leif [4 ]
Lohila, Annalea [3 ,5 ]
Nilsson, Mats B. [6 ]
Rinne, Janne [1 ]
Tuittila, Eeva-Stiina [7 ]
Vestin, Patrik [1 ]
Weslien, Per [4 ]
Eklundh, Lars [1 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosystem Sci, S-22362 Lund, Sweden
[2] Lund Univ, Ctr Environm & Climate Sci, S-22362 Lund, Sweden
[3] Finnish Meteorol Inst, Erik Palmenin Aukio 1, Helsinki 00560, Finland
[4] Univ Gothenburg, Dept Earth Sci, S-40530 Gothenburg, Sweden
[5] Univ Helsinki, Inst Atmospher & Earth Syst Res INAR Phys, POB 64, Helsinki 00014, Finland
[6] Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden
[7] Univ Eastern Finland, Sch Forest Sci, Joensuu 80101, Finland
关键词
ecosystem respiration (ER); footprint analysis; gross primary production (GPP); net ecosystem exchange (NEE); peatland; Sentinel-2; upscaling;
D O I
10.3390/rs13040818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R-2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R-2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] Lineament mapping using multispectral remote sensing satellite data
    Marghany, Maged
    Hashim, Mazlan
    [J]. INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (10): : 1501 - 1507
  • [32] Retrieving visibility values using satellite remote sensing data
    Hadjimitsis, Diofantos G.
    Clayton, Chris
    Toulios, Leonidas
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2010, 35 (1-2) : 121 - 124
  • [33] Estimation of seasonal runoff using remote sensing satellite data
    Sorman, AU
    Saydam, C
    [J]. REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS FOR DESIGN AND OPERATION OF WATER RESOURCES SYSTEMS, 1997, (242): : 103 - 112
  • [34] Evaluating MODIS vegetation products using digital images for quantifying local peatland CO2 gas fluxes
    Gatis, Naomi
    Anderson, Karen
    Grand-Clement, Emilie
    Luscombe, David J.
    Hartley, Iain P.
    Smith, David
    Brazier, Richard E.
    [J]. REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2017, 3 (04) : 217 - 231
  • [35] Error correlation between CO2 and CO as constraint for CO2 flux inversions using satellite data
    Wang, H.
    Jacob, D. J.
    Kopacz, M.
    Jones, D. B. A.
    Suntharalingam, P.
    Fisher, J. A.
    Nassar, R.
    Pawson, S.
    Nielsen, J. E.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (19) : 7313 - 7323
  • [36] Upscaling of spectroradiometer data for stress detection in orchards with remote sensing
    Kempeneers, P
    De Backer, S
    Delalieux, S
    Sterckx, S
    Debruyn, W
    Coppin, P
    Scheunders, P
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VI, 2004, 5568 : 37 - 45
  • [37] CO2 fluxes and evaporation on a peatland in the Netherlands appear not affected by water table fluctuations
    Parmentier, F. J. W.
    van der Molen, M. K.
    de Jeu, R. A. M.
    Hendriks, D. M. D.
    Dolman, A. J.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (6-7) : 1201 - 1208
  • [38] Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
    Linkosalmi, Maiju
    Tuovinen, Juha-Pekka
    Nevalainen, Olli
    Peltoniemi, Mikko
    Tanis, Cemal M.
    Arslan, Ali N.
    Rainne, Juuso
    Lohila, Annalea
    Laurila, Tuomas
    Aurela, Mika
    [J]. BIOGEOSCIENCES, 2022, 19 (19) : 4747 - 4765
  • [39] Growing season CO2 fluxes from a drained peatland dominated by Molinia caerulea
    Gatis, N.
    Grand-Clement, E.
    Luscombe, D. J.
    Hartley, I. P.
    Anderson, K.
    Brazier, R. E.
    [J]. MIRES AND PEAT, 2019, 24 : 1 - 16
  • [40] Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland
    Wright, Emma L.
    Black, Colin R.
    Cheesman, Alexander W.
    Drage, Trevor
    Large, David
    Turner, Benjamin L.
    Sjoegersten, Sofie
    [J]. GLOBAL CHANGE BIOLOGY, 2011, 17 (09) : 2867 - 2881