Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression

被引:59
|
作者
Ueyama, Masahito [1 ]
Ichii, Kazuhito [2 ]
Iwata, Hiroki [3 ]
Euskirchen, Eugenie S. [4 ]
Zona, Donatella [5 ,6 ]
Rocha, Adrian V. [7 ,8 ]
Harazono, Yoshinobu [1 ,3 ]
Iwama, Chie [1 ]
Nakai, Taro [3 ]
Oechel, Walter C. [5 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka 5998531, Japan
[2] Fukushima Univ, Fac Symbiot Syst Sci, Fukushima, Japan
[3] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA
[4] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA
[5] San Diego State Univ, Dept Biol, Global Change Res Grp, San Diego, CA 92182 USA
[6] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[7] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
[8] Univ Notre Dame, Environm Change Initiat, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Alaska; upscaling CO2 fluxes; disturbance; eddy covariance; Moderate Resolution Imaging Spectroradiometer (MODIS); support vector regression; BLACK SPRUCE FOREST; GROSS PRIMARY PRODUCTION; ARCTIC TUNDRA; PRIMARY PRODUCTIVITY; CO2; EXCHANGE; NORTHERN ALASKA; COMBINING MODIS; AMERIFLUX DATA; CLIMATE-CHANGE; LEAF-AREA;
D O I
10.1002/jgrg.20095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide (CO2) fluxes from a network of 21 eddy covariance towers were upscaled to estimate the Alaskan CO2 budget from 2000 to 2011 by combining satellite remote sensing data, disturbance information, and a support vector regression model. Data were compared with the CO2 budget from an inverse model (CarbonTracker). Observed gross primary productivity (GPP), ecosystem respiration (RE), and net ecosystem exchange (NEE) were each well reproduced by the model on the site scale; root-mean-square errors (RMSEs) for GPP, RE, and NEE were 0.52, 0.23, and 0.48g C m(-2) d(-1), respectively. Landcover classification was the most important input for predicting GPP, whereas visible reflectance index of green ratio was the most important input for predicting RE. During the period of 2000-2011, predicted GPP and RE were 36922 and 36212 Tg C yr(-1) (meaninterannual variability) for Alaska, respectively, indicating an approximately neutral CO2 budget for the decade. CarbonTracker also showed an approximately neutral CO2 budget during 2000-2011 (growing season RMSE=14g C m(-2) season(-1); annual RMSE=13g C m(-2) yr(-1)). Interannual CO2 flux variability was positively correlated with air temperature anomalies from June to August, with Alaska acting as a greater CO2 sink in warmer years. CO2 flux trends for the decade were clear in disturbed ecosystems; positive trends in GPP and CO2 sink were observed in areas where vegetation recovered for about 20 years after fire.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [1] Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
    Dannenberg, Matthew P.
    Barnes, Mallory L.
    Smith, William K.
    Johnston, Miriam R.
    Meerdink, Susan K.
    Wang, Xian
    Scott, Russell L.
    Biederman, Joel A.
    [J]. BIOGEOSCIENCES, 2023, 20 (02) : 383 - 404
  • [2] Remote sensing and ecosystem modeling to simulate terrestrial carbon fluxes
    Sanchez Ruiz, Sergio
    [J]. REVISTA DE TELEDETECCION, 2019, (53): : 86 - 90
  • [3] Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data
    Junttila, Sofia
    Kelly, Julia
    Kljun, Natascha
    Aurela, Mika
    Klemedtsson, Leif
    Lohila, Annalea
    Nilsson, Mats B.
    Rinne, Janne
    Tuittila, Eeva-Stiina
    Vestin, Patrik
    Weslien, Per
    Eklundh, Lars
    [J]. REMOTE SENSING, 2021, 13 (04) : 1 - 23
  • [4] A Support Vector Regression Approach to Predict Carbon Dioxide Exchange
    De Paz, Juan F.
    Perez, Belen
    Gonzalez, Angelica
    Corchado, Emilio
    Corchado, Juan M.
    [J]. DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2010, 79 : 157 - 164
  • [5] Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska
    J. S. Kimball
    M. Zhao
    K. C. McDonald
    S. W. Running
    [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11 (4) : 783 - 804
  • [6] Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
    Donati, Davide
    Stead, Doug
    Rabus, Bernhard
    Engelbrecht, Jeanine
    Clague, John J.
    Newman, Stephen D.
    Francioni, Mirko
    [J]. REMOTE SENSING, 2024, 16 (01)
  • [7] Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
    Tuia, Devis
    Verrelst, Jochem
    Alonso, Luis
    Perez-Cruz, Fernando
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 804 - 808
  • [8] QUANTUM SUPPORT VECTOR REGRESSION FOR BIOPHYSICAL VARIABLE ESTIMATION IN REMOTE SENSING
    Pasetto, Edoardo
    Delilbasic, Amer
    Cavallaro, Gabriele
    Willsch, Madita
    Melgani, Farid
    Riedel, Morris
    Michielsen, Kristel
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4903 - 4906
  • [9] Satellite-Based Modeling of the Carbon Fluxes in Mature Black Spruce Forests in Alaska: A Synthesis of the Eddy Covariance Data and Satellite Remote Sensing Data
    Ueyama, Masahito
    Harazono, Yoshinobu
    Ichii, Kazuhito
    [J]. EARTH INTERACTIONS, 2010, 14 : 1 - 27
  • [10] Upscaling of Terrestrial Laser Scanning through Fusion with Remote Sensing Data
    Terryn, Louise
    Calders, Kim
    Marselis, Suzanne
    Disney, Mathias
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2022, 36 (07): : 22 - 25