Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si

被引:4
|
作者
Pantzas, K. [1 ,2 ]
Le Bourhis, E. [2 ]
Patriarche, G. [1 ]
Troadec, D. [3 ]
Beaudoin, G. [1 ]
Itawi, A. [1 ]
Sagnes, I. [1 ]
Talneau, A. [1 ]
机构
[1] CNRS, UPR 20, Lab Photon & Nanostruct, Route Nozay, F-91460 Marcoussis, France
[2] Univ Poitiers, Inst P, CNRS, ENSMA,UPR 3346,SP2MI,Teleport, 2 Bd Marie Pierre Curie,BP 30179, F-86962 Futuroscope, France
[3] CNRS, UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
关键词
direct bonding; photonic integration; instrumented nano-indentation; atomic force microscopy; scanning transmission electron microscopy; DOUBLE CANTILEVER BEAM; CRACK-PROPAGATION;
D O I
10.1088/0957-4484/27/11/115707
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Sub-100 nm IR spectromicroscopy of living cells
    Mayet, C.
    Dazzi, A.
    Prazeres, R.
    Allot, E.
    Glotin, E.
    Ortega, J. M.
    OPTICS LETTERS, 2008, 33 (14) : 1611 - 1613
  • [32] Resist requirements for sub-100 nm microlithography.
    Hinsberg, WD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U191 - U191
  • [33] Sub-100 nm2 Cobalt Interconnects
    Dutta, Shibesh
    Beyne, Sofie
    Gupta, Anshul
    Kundu, Shreya
    Bender, Hugo
    Van Elshocht, Sven
    Jamieson, Geraldine
    Vandervorst, Wilfried
    Bommels, Jurgen
    Wilson, Christopher J.
    Tokei, Zsolt
    Adelmann, Christoph
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) : 731 - 734
  • [34] Sub-100 nm Channel Length Graphene Transistors
    Liao, Lei
    Bai, Jingwei
    Cheng, Rui
    Lin, Yung-Chen
    Jiang, Shan
    Qu, Yongquan
    Huang, Yu
    Duan, Xiangfeng
    NANO LETTERS, 2010, 10 (10) : 3952 - 3956
  • [35] Hardmask technology for sub-100 nm lithographic imaging
    Babich, K
    Mahorowala, AP
    Medeiros, DR
    Pfeiffer, D
    Petrillo, K
    Angelopoulos, M
    Grill, A
    Patel, VV
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 152 - 165
  • [36] Sub-100 nm structures by neutral atom lithography
    Schulze, Th.
    Brezger, B.
    Schmidt, P.O.
    Mertens, R.
    Bell, A.S.
    Pfau, T.
    Mlynek, J.
    Microelectronic Engineering, 1999, 46 (01): : 105 - 108
  • [37] Simulations of Scaled Sub-100 nm Strained Si/SiGe p-Channel MOSFETs
    Yang, L.
    Watling, J. R.
    Borici, M.
    Wilkins, R. C. W.
    Asenov, A.
    Barker, J. R.
    Roy, S.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 363 - 368
  • [38] Simulations of Scaled Sub-100 nm Strained Si/SiGe p-Channel MOSFETs
    L. Yang
    J.R. Watling
    M. Boriçi
    R.C.W. Wilkins
    A. Asenov
    J.R. Barker
    S. Roy
    Journal of Computational Electronics, 2003, 2 : 363 - 368
  • [39] Deep Sub-100 nm Ge CMOS Devices on Si with the Recessed S/D and Channel
    Wu, Heng
    Luo, Wei
    Si, Mengwei
    Zhang, Jingyun
    Zhou, Hong
    Ye, Peide D.
    2014 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2014,