Congruences for partitions with odd parts distinct modulo 5

被引:10
|
作者
Cui, Su-Ping [1 ]
Gu, Wen Xiang [1 ]
Ma, Zhen Sheng [1 ]
机构
[1] Changchun Architecture & Civil Engn Coll, Inst Appl Math & Intelligence Syst, Dept Basic Subjects Teaching, Changchun 130607, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; congruence; operator; odd parts distinct;
D O I
10.1142/S1793042115500943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hirschhorn and Sellers studied arithmetic properties of the number of partitions with odd parts distinct modulo powers of 3. In this paper, we focus on congruences for pod(n) modulo 5. For example, for alpha >= 2 and n >= 0, we have pod (5(2 alpha)n + 11.5(2 alpha-1) + 1/8) = 0 (mod 5). In addition, applying some equations given by Hirschhorn and Sellers [ Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010) 273-284], some new congruences are established.
引用
收藏
页码:2151 / 2159
页数:9
相关论文
共 50 条
  • [21] Congruences for 5-regular partitions modulo powers of 5
    Liuquan Wang
    The Ramanujan Journal, 2017, 44 : 343 - 358
  • [22] General congruences modulo 5 and 7 for colour partitions
    Saikia, Nipen
    Boruah, Chayanika
    JOURNAL OF ANALYSIS, 2021, 29 (03): : 917 - 926
  • [23] Congruences for 5-regular partitions modulo powers of 5
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2017, 44 (02): : 343 - 358
  • [24] General congruences modulo 5 and 7 for colour partitions
    Nipen Saikia
    Chayanika Boruah
    The Journal of Analysis, 2021, 29 : 917 - 926
  • [25] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 273 - 284
  • [26] Arithmetic properties of partitions with odd parts distinct
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 22 : 273 - 284
  • [27] Congruences for the number of partitions and bipartitions with distinct even parts
    Dai, Haobo
    DISCRETE MATHEMATICS, 2015, 338 (03) : 133 - 138
  • [28] ON THE RAMANUJAN-TYPE CONGRUENCES MODULO 8 FOR THE OVERPARTITIONS INTO ODD PARTS
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1567 - 1574
  • [29] NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR OVERPARTITIONS INTO ODD PARTS
    Hemanthkumar, B.
    Chandankumar, S.
    MATEMATICKI VESNIK, 2021, 73 (02): : 141 - 148
  • [30] Congruences modulo 11 for broken 5-diamond partitions
    Eric H. Liu
    James A. Sellers
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 46 : 151 - 159