Numerical verification of the Concentric Arches model for geosynthetic-reinforced pile-supported embankments: applicability and limitations

被引:19
|
作者
Lee, Taehee [1 ]
van Eekelen, Suzanne J. M. [2 ]
Jung, Young-Hoon [3 ]
机构
[1] Korea Inst Civil Engn & Bldg Technol, Goyang, South Korea
[2] Deltares, Delft, Netherlands
[3] Kyung Hee Univ, Dept Civil Engn, Yongin, South Korea
关键词
geosynthetic reinforcement; pile-supported embankments; three-dimensional finite element method; soil arching; Concentric Arches model; ground reaction curve; subsoil support; VALIDATION; EVOLUTION;
D O I
10.1139/cgj-2019-0625
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this study, a series of three-dimensional finite element simulations of a geosynthetic-reinforced pile-supported embankment design was conducted. The effects of subsoil stiffness, friction and dilation angles of the fill, fill height, pile spacing, surcharge load on the embankment, and anisotropic tensile stiffness of the geosynthetic reinforcement (GR), ground reaction curve, and interfacial responses between the fill material and CR were scrutinized. Numerical results showed how transfer of the vertical load towards the piles (load part A) and the related soil arches change with subsoil stiffness, geometric parameters, and vertical pressure on the embankment. Furthermore, the vertical load transferred through the GR (load part B) is reduced significantly with increasing subsoil stiffness, while the load part carried by the subsoil (load part C) increases. The numerical results showed that the vertical stress distribution on the GR changes from an inversetriangular shape for low subsoil stiffness to a uniform shape for high subsoil stiffness. This matches perfectly with the Concentric Arches model. For low subsoil stiffness, the tensile strains of the GR are concentrated at the corner of a square pile cap.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 50 条
  • [41] Centrifuge tests to investigate global performance of geosynthetic-reinforced pile-supported embankments with side slopes
    Shen, Panpan
    Xu, Chao
    Han, Jie
    GEOTEXTILES AND GEOMEMBRANES, 2020, 48 (01) : 120 - 127
  • [42] Geosynthetic reinforcement of pile-supported embankments
    Girout, R.
    Blanc, M.
    Thorel, L.
    Dias, D.
    GEOSYNTHETICS INTERNATIONAL, 2018, 25 (01) : 37 - 49
  • [43] Geosynthetic-reinforced pile-supported embankment: settlement in different pile conditions
    Shen, P.
    Xu, C.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (03) : 315 - 331
  • [44] A computation model for pile-soil stress ratio of geosynthetic-reinforced pile-supported embankments based on soil consolidation settlement
    Li, Binli
    Yu, Jin
    Zhou, Yitao
    Cai, Yanyan
    Liu, Shiyu
    Tu, Bingxiong
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 39 - 48
  • [45] Evaluation of an Improved Technique for Geosynthetic-Reinforced and Pile-Supported Embankment
    Zhang, Jun
    Liu, Shao-wen
    Pu, He-fu
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [46] Geosynthetic-reinforced and pile-supported earth platform composite foundation
    Yan Li
    Yang Jun-sheng
    Han Jie
    ROCK AND SOIL MECHANICS, 2005, 26 (05) : 821 - 826
  • [47] Geosynthetic-reinforced and pile-supported earth platform composite foundation
    Yan, Li
    Yang, Jun-Sheng
    Han, Jie
    Yantu Lixue/Rock and Soil Mechanics, 2005, 26 (05): : 821 - 826
  • [48] Evaluating the mechanisms and performance of Geosynthetic-Reinforced Load Transfer Platform of pile-supported embankments design methods
    Nobahar, M.
    Abu-Farsakh, M. Y.
    Izadifar, M.
    GEOTEXTILES AND GEOMEMBRANES, 2024, 52 (06) : 1112 - 1133
  • [49] Two-dimensional soil arching evolution in geosynthetic-reinforced pile-supported embankments over voids
    Rui, Rui
    Ye, Yu-qiu
    Han, Jie
    Zhai, Yu-xin
    Wan, Yi
    Chen, Cheng
    Zhang, Lei
    GEOTEXTILES AND GEOMEMBRANES, 2022, 50 (01) : 82 - 98
  • [50] A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pile-supported embankments
    Lu, Weihua
    Miao, Linchang
    COMPUTERS AND GEOTECHNICS, 2015, 65 : 97 - 103