A computation model for pile-soil stress ratio of geosynthetic-reinforced pile-supported embankments based on soil consolidation settlement

被引:3
|
作者
Li, Binli [1 ]
Yu, Jin [1 ]
Zhou, Yitao [2 ]
Cai, Yanyan [1 ]
Liu, Shiyu [1 ]
Tu, Bingxiong [1 ]
机构
[1] Huaqiao Univ, Fujian Res Ctr Tunneling & Urban Underground Spac, Xiamen 361021, Peoples R China
[2] Hebei Univ Water Resources & Elect Power, Sch Civil Engn, Cangzhou 061001, Peoples R China
基金
中国国家自然科学基金;
关键词
Geosynthetic-reinforced pile-supported embankments; Soil among piles; Pile-soil stress ratio; Consolidation settlement; Soil arching effect; Tension membrane effect; NEGATIVE SKIN-FRICTION; COLUMN;
D O I
10.1016/j.aej.2020.04.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pile-soil stress ratio (PSSR) is the key to the design and construction of geosynthetic-reinforced pile-supported (GRPS) embankments. However, the computation models for the PSSR which takes account of the effect of consolidation settlement of soil among piles (SAP) is not complete. This paper splits the piles and the SAP into multiple small elements for iterative calculation, according to the principle of the collaborative actions between pile, soil, embankment and reinforcement. The calculation method for pile-soil interaction was improved by Davis' 1D nonlinear consolidation theory, and the hyperbolic load transfer model of pile-soil interface proposed by Wong and Teh. Then, a novel computation model for the PSSR of GRPS embankments was established, under the joint impact of soil arching effect, tension membrane effect and improved pile-soil interaction. Finally, this proposed computation model was proved reasonable by the comparison with tests and other methods, and the effects of key parameters were investigated. The results show that the settlement difference between piles and SAP increased with the degree of consolidation of the SAP and the elapse of time; the PSSR below the reinforcement net (RN) is slightly higher than that above the RN; the PSSRs above and below the RN are both positively correlated with the degree of consolidation and initial bulk compressibility of the SAP. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [1] Field test of geosynthetic-reinforced floating pile-supported embankments on soft soil
    Rui, Rui
    He, Shi-kai
    Peng, Long-fan
    Van Eekelen, S.J.M.
    Li, Liang-hao
    Ye, Yu-qiu
    Geotextiles and Geomembranes, 2 (528-544):
  • [2] Field test of geosynthetic-reinforced floating pile-supported embankments on soft soil
    Rui, Rui
    He, Shi-kai
    Peng, Long-fan
    Van Eekelen, S. J. M.
    Li, Liang-hao
    Ye, Yu-qiu
    GEOTEXTILES AND GEOMEMBRANES, 2025, 53 (02) : 528 - 544
  • [3] Reinforcement load in geosynthetic-reinforced pile-supported model embankments
    Liu, Chengyu
    Shan, Yao
    Wang, Binglong
    Zhou, Shunhua
    Wang, Changdan
    GEOTEXTILES AND GEOMEMBRANES, 2022, 50 (06) : 1135 - 1146
  • [4] Probabilistic analysis of geosynthetic-reinforced and pile-supported embankments
    Guo, Xiangfeng
    Pham, Tuan A.
    Dias, Daniel
    COMPUTERS AND GEOTECHNICS, 2022, 142
  • [5] Geosynthetic-reinforced pile-supported embankments: state of the art
    van Eekelen, S. J. M.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (02) : 112 - 141
  • [6] Mechanical Performance of Geosynthetic-Reinforced Pile-Supported Embankments
    Sun, Ling
    Zheng, Jun-Jie
    Zhang, Jun
    Ma, Qiang
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1, 2, 2011, 156-157 : 1696 - 1701
  • [7] Geosynthetic-reinforced pile-supported embankment: settlement in different pile conditions
    Shen, P.
    Xu, C.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (03) : 315 - 331
  • [8] Pile efficacy of geosynthetic-reinforced pile-supported embankments with piles arranged in triangle
    Gong Yue-hang
    Li Ming-bao
    Zheng Jun-jie
    ROCK AND SOIL MECHANICS, 2021, 42 (11) : 3051 - 3058
  • [9] AN EXPERIMENTAL INVESTIGATION OF FOUNDATION SETTLEMENT AND GEOSYNTHETIC DEFORMATION WITHIN GEOSYNTHETIC-REINFORCED AND PILE-SUPPORTED EMBANKMENTS
    Wei, Ping
    Wei, Jing
    Zhang, Dong
    Chen, Hongbing
    CONSTRUCTION AND MAINTENANCE OF RAILWAY INFRASTRUCTURE IN COMPLEX ENVIRONMENT, 2014, : 366 - 370
  • [10] Pile efficacy of geosynthetic-reinforced pile-supported embankments with piles arranged in triangle
    Gong, Yue-Hang
    Li, Ming-Bao
    Zheng, Jun-Jie
    Yantu Lixue/Rock and Soil Mechanics, 2021, 42 (11): : 3051 - 3058