Voronoi space division of a polymer

被引:0
|
作者
Tokita, N
Hirabayashi, M
Azuma, C
Dotera, T
机构
来源
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In terms of Voronoi division we study the local geometry of a grafted polymer having 52 ends in united-atom molecular dynamics simulations. The volume of a Voronoi polyhedron for a chain end is larger than that for an internal or junction atom, and that it is the most sensitive to temperature. Chain ends dominantly localize at the surface of the globule: While the ratio of surface atoms is only 24% of all atoms, the ratio of ends at the surface is 91% out of all ends. The shape of Voronoi polyhedra for internal atoms is prolate even in the bulk. We find that two specific faces play a significant role in the faces occupy 38% of the total surface area of a Voronoi Voronoi space division of covalently bonding polymers: Two bonding polyhedron and determine the prolate shape.
引用
收藏
页码:267 / 268
页数:2
相关论文
共 50 条
  • [31] On the division of space by topological hyperplanes
    Forge, David
    Zaslavsky, Thomas
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (08) : 1835 - 1845
  • [32] SPACE DIVISION MULTIPLEXED HOLOGRAMS
    CAUFIELD, HJ
    APPLIED OPTICS, 1971, 10 (06): : 1455 - &
  • [33] Beamforming for Space Division Duplexing
    Senaratne, Damith
    Tellambura, Chintha
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [34] PATTERN OF SPACE DIVISION BY TERRITORIES
    HASEGAWA, M
    TANEMURA, M
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1976, 28 (03) : 509 - 519
  • [35] Space division multiplexing algorithms
    van Zelst, A
    MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 1218 - 1221
  • [36] Mathematical modeling of polymer flooding using the unstructured Voronoi grid
    Kireev, T. F.
    Bulgakova, G. T.
    Khatmullin, I. F.
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES (IC-MSQUARE 2017), 2017, 936
  • [37] Centroidal Voronoi tessellation in universal covering space of manifold surfaces
    Rong, Guodong
    Jin, Miao
    Shuai, Liang
    Guo, Xiaohu
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (08) : 475 - 496
  • [38] A framework of Voronoi diagram for planning multiple paths in free space
    Banerjee, Bonny
    Chandrasekaran, B.
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2013, 25 (04) : 457 - 475
  • [39] Direct Algorithm for the Exact Voronoi Diagram on Discrete Topographic Space
    Duan X.
    Ge Y.
    Zhang T.
    Li L.
    Tan Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (05): : 799 - 806
  • [40] CRYSTAL SPACE ANALYSIS BY MEANS OF VORONOI-DIRICHLET POLYHEDRA
    BLATOV, VA
    SHEVCHENKO, AP
    SEREZHKIN, VN
    ACTA CRYSTALLOGRAPHICA SECTION A, 1995, 51 : 909 - 916