Voronoi space division of a polymer

被引:0
|
作者
Tokita, N
Hirabayashi, M
Azuma, C
Dotera, T
机构
来源
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In terms of Voronoi division we study the local geometry of a grafted polymer having 52 ends in united-atom molecular dynamics simulations. The volume of a Voronoi polyhedron for a chain end is larger than that for an internal or junction atom, and that it is the most sensitive to temperature. Chain ends dominantly localize at the surface of the globule: While the ratio of surface atoms is only 24% of all atoms, the ratio of ends at the surface is 91% out of all ends. The shape of Voronoi polyhedra for internal atoms is prolate even in the bulk. We find that two specific faces play a significant role in the faces occupy 38% of the total surface area of a Voronoi Voronoi space division of covalently bonding polymers: Two bonding polyhedron and determine the prolate shape.
引用
收藏
页码:267 / 268
页数:2
相关论文
共 50 条
  • [21] Uncertain Voronoi cell computation based on space decomposition
    Schmid, Klaus Arthur
    Zufle, Andreas
    Emrich, Tobias
    Renz, Matthias
    Cheng, Reynold
    GEOINFORMATICA, 2017, 21 (04) : 797 - 827
  • [22] Identifying phase-space boundaries with Voronoi tessellations
    Dipsikha Debnath
    James S. Gainer
    Can Kilic
    Doojin Kim
    Konstantin T. Matchev
    Yuan-Pao Yang
    The European Physical Journal C, 2016, 76
  • [23] Voronoi diagram in 3-d hyperbolic space
    Nilforoushan, Z.
    Mohades, A.
    Laleh, A.
    Rezaii, M. M.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 149 - 152
  • [24] Information space partitioning using adaptive Voronoi diagrams
    Reitsma, René
    Trubin, Stanislav
    Information Visualization, 2007, 6 (02) : 123 - 138
  • [25] Geometrical modeling of cell division and cell remodeling based on Voronoi tessellation method
    Lin, Liqiang
    Wang, Xianqiao
    Zeng, Xiaowei
    CMES - Computer Modeling in Engineering and Sciences, 2014, 98 (02): : 203 - 220
  • [26] Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method
    Lin, Liqiang
    Wang, Xianqiao
    Zeng, Xiaowei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 98 (02): : 203 - 220
  • [27] SPACE DIVISION FOR RAY TRACING
    SPEER, R
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1986, 6 (09) : 54 - 54
  • [28] SPACE DIVISION MULTIPLEXING HOLOGRAPHY
    AOKI, Y
    PROCEEDINGS OF THE IEEE, 1969, 57 (03) : 358 - &
  • [29] Polymer Education - A Matter at the Heart of the IUPAC Polymer Division
    Mormann, Werner
    MACROMOLECULAR SYMPOSIA, 2015, 355 (01) : 8 - 12
  • [30] FAIR DIVISION OF A MEASURABLE SPACE
    WELLER, D
    JOURNAL OF MATHEMATICAL ECONOMICS, 1985, 14 (01) : 5 - 17