Voronoi space division of a polymer

被引:0
|
作者
Tokita, N
Hirabayashi, M
Azuma, C
Dotera, T
机构
来源
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In terms of Voronoi division we study the local geometry of a grafted polymer having 52 ends in united-atom molecular dynamics simulations. The volume of a Voronoi polyhedron for a chain end is larger than that for an internal or junction atom, and that it is the most sensitive to temperature. Chain ends dominantly localize at the surface of the globule: While the ratio of surface atoms is only 24% of all atoms, the ratio of ends at the surface is 91% out of all ends. The shape of Voronoi polyhedra for internal atoms is prolate even in the bulk. We find that two specific faces play a significant role in the faces occupy 38% of the total surface area of a Voronoi Voronoi space division of covalently bonding polymers: Two bonding polyhedron and determine the prolate shape.
引用
收藏
页码:267 / 268
页数:2
相关论文
共 50 条
  • [1] Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation
    Tokita, N
    Hirabayashi, M
    Azuma, C
    Dotera, T
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01): : 496 - 505
  • [2] Reinforcement learning using Voronoi space division
    Aung, Kathy
    Fuchida, Takayasu
    ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (03) : 330 - 334
  • [3] Polymer division
    Cluley, A
    MATERIALS WORLD, 1998, 6 (03) : 165 - 165
  • [4] Voronoi tessellations in thin polymer blend films
    Ngwa, W
    Wannemacher, R
    Grill, W
    Serghei, A
    Kremer, F
    Kundu, T
    MACROMOLECULES, 2004, 37 (05) : 1691 - 1692
  • [5] Polymer division news
    Cluley, A
    MATERIALS WORLD, 1999, 7 (08) : 499 - 499
  • [6] POLYMER DIVISION PR
    CULBERTS.BM
    CHEMICAL & ENGINEERING NEWS, 1970, 48 (25) : 6 - &
  • [7] On Voronoi Diagrams in the Planar Line Space and Their Generalizations
    Schmitt, Dominique
    Vyatkina, Kira
    TRANSACTIONS ON COMPUTATIONAL SCIENCE XX: SPECIAL ISSUE ON VORONOI DIAGRAMS AND THEIR APPLICATIONS, 2013, 8110 : 170 - 180
  • [8] Allocation using a heterogeneous space Voronoi diagram
    Feng, Xin
    Murray, Alan T.
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2018, 20 (03) : 207 - 226
  • [9] Allocation using a heterogeneous space Voronoi diagram
    Xin Feng
    Alan T. Murray
    Journal of Geographical Systems, 2018, 20 : 207 - 226
  • [10] Voronoi's conjecture and space tiling zonotopes
    Deza, M
    Grishukhin, V
    MATHEMATIKA, 2004, 51 (101-02) : 1 - 10