Large deviation function for the Eden model and universality within the one-dimensional Kardar-Parisi-Zhang class

被引:6
|
作者
Appert, C [1 ]
机构
[1] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.2092
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It has been recently conjectured that for large systems, the shape of the central part of the large deviation function of the growth velocity would be universal for all the growth systems described by the Kardar-Parisi-Zhang equation in 1+1 dimension. One signature of this universality would be that the ratio of cumulants R-t=[[h(t)(3)](c)](2)/[[h(t)(2)](c)[h(t)(4)](c)] would tend towards a universal value 0.415 17... as t tends to infinity, provided periodic boundary conditions rue used. This has recently been questioned by Stauffer. In this paper we summarize various numerical and analytical results supporting this conjecture, and report in particular some numerical measurements of the ratio R-t for the Eden model.
引用
收藏
页码:2092 / 2094
页数:3
相关论文
共 50 条
  • [31] Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates
    Oliveira, T. J.
    Ferreira, S. C.
    Alves, S. G.
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [32] Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
    Rodriguez-Fernandez, Enrique
    Ales, Alejandro
    Martin-alvarez, Jorge
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [33] Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class
    Corwin, Ivan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1007 - 1034
  • [34] Hallmarks of the Kardar-Parisi-Zhang universality class elicited by scanning probe microscopy
    Alves, Sidiney G.
    de Araujo, Clodoaldo I. L.
    Ferreira, Silvio C.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [35] From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class
    Gomes, Waldenor P.
    Penna, Andre L. A.
    Oliveira, Fernando A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [36] Feedback control of surface roughness in a one-dimensional Kardar-Parisi-Zhang growth process
    Priyanka
    Tauber, Uwe C.
    Pleimling, Michel
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [37] Stochastic entropies and fluctuation theorems for a discrete one-dimensional Kardar-Parisi-Zhang system
    Rodriguez, Miguel A.
    Wio, Horacio S.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [38] Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [39] Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+1) dimensions
    Pagnani, Andrea
    Parisi, Giorgio
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [40] Kardar-Parisi-Zhang universality class for the critical dynamics of reaction-diffusion fronts
    Barreales, B. G.
    Melendez, J. J.
    Cuerno, R.
    Ruiz-Lorenzo, J. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02):