Finite element approximation of the nonlinear Kirchhoff string with boundary control

被引:0
|
作者
Wu, Yuhu [1 ,2 ]
Shen, Tielong [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin, Peoples R China
[2] Sophia Univ, Dept Mech Engn, Tokyo 102, Japan
关键词
Kirchhoff string; Boundary control; Sector condition; Finite element method; STABILIZATION; EXISTENCE; DECAY; BEAM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the finite element approximation problem of a nonlinear Kirchhoff string with the nonlinear boundary control. The nonlinear boundary control is the negative feedback of the transversal velocity of the string at one end, which satisfies a sector constrain. Based on the equivalent variational formulation of the nonlinear string equations, the finite element approximation of the Kirchhoff string with boundary control input is derived in the Lagrange polynomial space of degree 1. Simulation examples are presented to show the effectiveness of our main result.
引用
收藏
页码:2682 / 2687
页数:6
相关论文
共 50 条
  • [41] Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type
    Abdelkarim Kelleche
    Nasser-eddine Tatar
    Ammar Khemmoudj
    [J]. Journal of Dynamical and Control Systems, 2017, 23 : 237 - 247
  • [42] Boundary stabilization for axially moving Kirchhoff string under fractional PI control
    Cheng, Yi
    Guo, Bao-Zhu
    Wu, Yuhu
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):
  • [43] Absolute stability of the axially moving Kirchhoff string with a sector boundary feedback control
    Yuhu Wu
    Xiaoping Xue
    Tielong Shen
    [J]. Nonlinear Dynamics, 2015, 80 : 9 - 22
  • [44] Finite element approximation to nonlinear coupled thermal problem
    Chang, Yanzhen
    Yang, Danping
    Zhu, Jiang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 467 - 477
  • [45] NONLINEAR FINITE ELEMENT ANALYSIS ON BEHAVIOR OF BIDIRECTIONAL STRING STRUCTURES
    Pan, Zhen-Zhou
    Xue, Wei-Chen
    [J]. PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS I AND II, 2008, : 794 - 798
  • [46] FINITE-ELEMENT APPROXIMATION OF A 2-POINT BOUNDARY-VALUE PROBLEM IN NONLINEAR ELASTICITY
    ODEN, JT
    REDDY, CT
    [J]. JOURNAL OF ELASTICITY, 1977, 7 (03) : 243 - 263
  • [47] Finite element approximation for Maxwell?s equations with Debye memory under a nonlinear boundary feedback with delay
    Yao, C. H.
    Fan, H. J.
    Zhao, Y. M.
    Tang, Y. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [48] Vectorial thin-element approximation: a semirigorous determination of Kirchhoff's boundary conditions
    Kerwien, Norbert
    Schuster, Thomas
    Rafler, Stephan
    Osten, Wolfgang
    Totzeck, Michael
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (04) : 1074 - 1084
  • [49] Adaptive Boundary Control of a Nonlinear Flexible String System
    He, Wei
    Zhang, Shuang
    Ge, Shuzhi Sam
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (03) : 1088 - 1093
  • [50] Finite element approximation to global stabilization of the Burgers’ equation by Neumann boundary feedback control law
    Sudeep Kundu
    Amiya Kumar Pani
    [J]. Advances in Computational Mathematics, 2018, 44 : 541 - 570