Finite element approximation of the nonlinear Kirchhoff string with boundary control

被引:0
|
作者
Wu, Yuhu [1 ,2 ]
Shen, Tielong [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin, Peoples R China
[2] Sophia Univ, Dept Mech Engn, Tokyo 102, Japan
关键词
Kirchhoff string; Boundary control; Sector condition; Finite element method; STABILIZATION; EXISTENCE; DECAY; BEAM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the finite element approximation problem of a nonlinear Kirchhoff string with the nonlinear boundary control. The nonlinear boundary control is the negative feedback of the transversal velocity of the string at one end, which satisfies a sector constrain. Based on the equivalent variational formulation of the nonlinear string equations, the finite element approximation of the Kirchhoff string with boundary control input is derived in the Lagrange polynomial space of degree 1. Simulation examples are presented to show the effectiveness of our main result.
引用
收藏
页码:2682 / 2687
页数:6
相关论文
共 50 条
  • [21] FINITE ELEMENT APPROXIMATION OF A CLASS OF NONLINEAR OPERATORS
    ODEN, JT
    [J]. SIAM REVIEW, 1971, 13 (02) : 274 - &
  • [22] Stabilization of a nonlinear Kirchhoff equation by boundary feedback control
    Daewook Kim
    Yong Han Kang
    Jae Bong Lee
    Gyu Ra Ko
    Il Hyo Jung
    [J]. Journal of Engineering Mathematics, 2012, 77 : 197 - 209
  • [23] Nonlinear Finite Element Analysis of Beam String Structure
    Jiang, Zhengrong
    Xu, Mu
    Duan, Weining
    Shi, Kairong
    Cai, Jian
    Wang, Shitong
    [J]. ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 2124 - 2130
  • [24] NONLINEAR FINITE ELEMENT ANAYLSIS OF BEAM STRING STRUCTURE
    Jiang, Zheng-Rong
    Wei, De-Min
    Xu, Mu
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOL I AND II, 2010, : 63 - 67
  • [25] Stabilization of a nonlinear Kirchhoff equation by boundary feedback control
    Kim, Daewook
    Kang, Yong Han
    Lee, Jae Bong
    Ko, Gyu Ra
    Jung, Il Hyo
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2012, 77 (01) : 197 - 209
  • [26] Boundary control of a nonlinear axially moving string
    Shahruz, SM
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2000, 10 (01) : 17 - 25
  • [27] Finite Element Approximation of Hamilton-Jacobi-Bellman equations with nonlinear mixed boundary conditions
    Jaroszkowski, Bartosz
    Jensen, Max
    [J]. arXiv, 2021,
  • [28] Finite-element approximation for singularly perturbed nonlinear elliptic boundary-value problems
    Prashant Kumar
    Manoj Kumar
    [J]. Computational Mathematics and Modeling, 2012, 23 (1) : 88 - 95
  • [29] Finite element approximation of Hamilton-Jacobi-Bellman equations with nonlinear mixed boundary conditions
    Jaroszkowski, Bartosz
    Jensen, Max
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 576 - 603
  • [30] Finite element approximation of Hamilton-Jacobi-Bellman equations with nonlinear mixed boundary conditions
    Jaroszkowski, Bartosz
    Jensen, Max
    [J]. IMA Journal of Numerical Analysis, 1600, 1 (576-603):