Multiobjective Groundwater Management Using Evolutionary Algorithms

被引:19
|
作者
Siegfried, Tobias [1 ]
Bleuler, Stefan [2 ]
Laumanns, Marco [3 ]
Zitzler, Eckart [2 ]
Kinzelbach, Wolfgang [4 ]
机构
[1] Columbia Univ, Earth Inst, New York, NY 10027 USA
[2] ETH, Swiss Fed Inst Technol, Comp Engn & Networks Lab, TIK, CH-8092 Zurich, Switzerland
[3] ETH, Swiss Fed Inst Technol, IFOR, CH-8092 Zurich, Switzerland
[4] ETH, Swiss Fed Inst Technol, Inst Environm Engn, IFU, CH-8092 Zurich, Switzerland
关键词
Benchmark application; economic externalities; groundwater management; multiobjective evolutionary algorithm; Pareto set approximation; PISA; MONITORING DESIGN; REMEDIATION; OPTIMIZATION;
D O I
10.1109/TEVC.2008.923391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sustainable management of groundwater resources is of crucial importance for regions where freshwater supply is naturally limited. Long-term planning of groundwater usage requires computer-based decision support tools: on the one hand, they must be able to predict I he complex system dynamics with sufficient accuracy, on the other, they must: allow exploring management scenarios with respect: to different criteria such as sustainability, cost, etc. In this paper, we present a multiobjective evolutionary algorithm for groundwater management that optimizes the placement and the operation of pumping facilities over time, while considering multiple neighboring regions which are economically independent. The algorithm helps in investigating the cost tradeoffs; between the different regions by providing an approximation of the Pareto-optimal set, and its capabilities are demonstrated on a three-region problem. The application of the proposed methodology can also serve as a benchmark problem as shown in this paper. The corresponding implementation is freely available as a precompiled module at http://www.tik.ee.ethz.ch/pisa.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 50 条
  • [31] MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Sanchis, J.
    [J]. IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 263 - 268
  • [32] Environmental Selection Using a Fuzzy Classifier for Multiobjective Evolutionary Algorithms
    Zhang, Jinyuan
    Ishibuchi, Hisao
    Shang, Ke
    He, Linjun
    Pang, Lie Meng
    Peng, Yiming
    [J]. PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 485 - 492
  • [33] Solving the Parameterless Firefighter Problem using Multiobjective Evolutionary Algorithms
    Michalak, Krzysztof
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1321 - 1328
  • [34] Design of a TTC Antenna Using Simulation and Multiobjective Evolutionary Algorithms
    Moreno, Javier
    Gonzalez, Ivan
    Rodriguez, Daniel
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2019, 34 (07) : 18 - 31
  • [35] Multiobjective Optimization Using Evolutionary Algorithms in Agile Teams Allocation
    Brandao Caldeira, Junea Eliza
    Imaeda Yoshioka, Sergio Roberto
    de Oliveira Rodrigues, Bruno Rafael
    Parreiras, Fernando Silva
    [J]. SBQS: PROCEEDINGS OF THE 18TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, 2019, : 89 - 98
  • [36] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [37] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    [J]. EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [38] Multiobjective evolutionary algorithms on complex networks
    Kirley, Michael
    Stewart, Robert
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 81 - +
  • [39] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [40] On Utilizing Infeasibility in Multiobjective Evolutionary Algorithms
    Hanne, Thomas
    [J]. MULTIOBJECTIVE PROGRAMMING AND GOAL PROGRAMMING: THEORETICAL RESULTS AND PRACTICAL APPLICATIONS, 2009, 618 : 113 - 122