Fast Bootstrap Confidence Intervals for Continuous Threshold Linear Regression

被引:8
|
作者
Fong, Youyi [1 ,2 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Div Publ Hlth Sci, Seattle, WA 98109 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
Change point; Model-robust; Segmented regression; MODELS;
D O I
10.1080/10618600.2018.1537927
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Continuous threshold regression is a common type of nonlinear regression that is attractive to many practitioners for its easy interpretability. More widespread adoption of threshold regression faces two challenges: (i) the computational complexity of fitting threshold regression models and (ii) obtaining correct coverage of confidence intervals under model misspecification. Both challenges result from the nonsmooth and nonconvex nature of the threshold regression model likelihood function. In this article we first show that these two issues together make the ideal approach for making model-robust inference in continuous threshold linear regression an impractical one. The need for a faster way of fitting continuous threshold linear models motivated us to develop a fast grid search method. The new method, based on the simple yet powerful dynamic programming principle, improves the performance by several orders of magnitude. for this article are available online.
引用
收藏
页码:466 / 470
页数:5
相关论文
共 50 条
  • [41] A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals
    Kim, W
    Linton, OB
    Hengartner, NW
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (02) : 278 - 297
  • [42] Confidence intervals in a regression with both linear and non-linear terms
    Davies, Robert
    Withers, Christopher
    Nadarajah, Saralees
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 603 - 618
  • [43] ON SYMMETRIC BOOTSTRAP CONFIDENCE-INTERVALS
    HALL, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (01): : 35 - 45
  • [44] Bootstrap Confidence Intervals for Noise Indicators
    Stepien, Bartlomiej
    [J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2016, 102 (02) : 389 - 397
  • [45] THE BOOTSTRAP IN THRESHOLD REGRESSION
    Yu, Ping
    [J]. ECONOMETRIC THEORY, 2014, 30 (03) : 676 - 714
  • [46] Sequential iterated bootstrap confidence intervals
    Lee, SMS
    Young, GA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (01): : 235 - 251
  • [47] The Automatic Construction of Bootstrap Confidence Intervals
    Efron, Bradley
    Narasimhan, Balasubramanian
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 608 - 619
  • [48] Bootstrap confidence intervals for ratios of expectations
    Choquet, Denis
    L'Ecuyer, Pierre
    Léger, Christian
    [J]. ACM Transactions on Modeling and Computer Simulation, 1999, 9 (04): : 326 - 348
  • [49] Bootstrap confidence intervals for the Pareto index
    Guillou, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (01) : 211 - 226
  • [50] Bootstrap confidence intervals for tail indices
    Caers, J
    Beirlant, J
    Vynckier, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) : 259 - 277