A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals

被引:33
|
作者
Kim, W
Linton, OB
Hengartner, NW
机构
[1] Yale Univ, Dept Econ, New Haven, CT 06520 USA
[2] Yale Univ, Dept Stat, New Haven, CT 06520 USA
关键词
instrumental variables; kernel estimation; marginal integration;
D O I
10.2307/1390637
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article makes three contributions. First, we introduce a computationally efficient estimator for the component functions in additive nonparametric regression exploiting a different motivation from the marginal integration estimator of Linton and Nielsen. Our method provides a reduction in computation of order n, which is highly significant in practice. Second, we define an efficient estimator of the additive components, by inserting the preliminary estimator into a backfitting algorithm but taking one step only, and establish that it is equivalent, in various senses, to the oracle estimator based on knowing the other components, Our two-step estimator is minimax superior to that considered in Opsomer and Ruppert, due to its better bias. Third, we define a bootstrap algorithm for computing pointwise confidence intervals and show that it achieves the correct coverage.
引用
收藏
页码:278 / 297
页数:20
相关论文
共 50 条
  • [1] ON BOOTSTRAP CONFIDENCE-INTERVALS IN NONPARAMETRIC REGRESSION
    HALL, P
    [J]. ANNALS OF STATISTICS, 1992, 20 (02): : 695 - 711
  • [2] Asymptotic validity of bootstrap confidence intervals in nonparametric regression without an additive model
    Wang, Liang
    Politis, Dimitris N.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 392 - 426
  • [3] Bootstrap confidence intervals in functional nonparametric regression under dependence
    Rana, Paula
    Aneiros, German
    Vilar, Juan
    Vieu, Philippe
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 1973 - 1999
  • [4] NONPARAMETRIC BOOTSTRAP CONFIDENCE-INTERVALS FOR DISCRETE REGRESSION-FUNCTIONS
    RODRIGUEZCAMPOS, MC
    CAOABAD, R
    [J]. JOURNAL OF ECONOMETRICS, 1993, 58 (1-2) : 207 - 222
  • [5] Bootstrap confidence intervals in nonparametric regression with built-in bias correction
    McMurry, Timothy L.
    Politis, Dimitris N.
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2463 - 2469
  • [6] Confidence intervals for nonparametric regression
    Brown, Lawrence D.
    Fu, Xin
    Zhao, Linda H.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 149 - 163
  • [7] Monotone Nonparametric Regression and Confidence Intervals
    Strand, Matthew
    Zhang, Yu
    Swihart, Bruce J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 828 - 845
  • [8] Simultaneous bootstrap confidence bands in nonparametric regression
    Neumann, MH
    Polzehl, J
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 1998, 9 (04) : 307 - 333
  • [9] Nonparametric confidence intervals based on extreme bootstrap percentiles
    Lee, SMS
    [J]. STATISTICA SINICA, 2000, 10 (02) : 475 - 496
  • [10] Bootstrap confidence intervals for principal covariates regression
    Giordani, Paolo
    Kiers, Henk A. L.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2021, 74 (03): : 541 - 566