Bootstrap confidence intervals in functional nonparametric regression under dependence

被引:28
|
作者
Rana, Paula [1 ]
Aneiros, German [1 ]
Vilar, Juan [1 ]
Vieu, Philippe [2 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna, Spain
[2] Univ Paul Sabatier, Inst Math, Toulouse, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 02期
关键词
Functional data; bootstrap; nonparametric regression; confidence intervals; alpha-mixing; TIME-SERIES PREDICTION; MODELS;
D O I
10.1214/16-EJS1156
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers naive and wild bootstrap procedures to construct pointwise confidence intervals for a nonparametric regression function when the predictor is of functional nature and when the data are dependent. Assuming alpha-mixing conditions on the sample, the asymptotic validity of both procedures is obtained. A simulation study shows promising results when finite sample sizes are used, while an application to electricity demand data illustrates its usefulness in practice.
引用
收藏
页码:1973 / 1999
页数:27
相关论文
共 50 条